

ICAO AMENDED ANNEX 14 OBSTACLE ASSESSMENT REPORT, FOR CAPE WINELANDS AIRPORT ATNS/ANNEX 14 - 04/10/2022 ISSUE 2

12/4/1/2-1_FAWN Annex 14

Page 1 of 28

04 October 2022

Air Traffic and Navigation Services Company SOC Limited

Company Reg. No. 1993/004150/30 ISO 9001 certified Eastgate Office Park, Block C, South Boulevard Road, Bruma Private Bag X15, Kempton Park 1620 Tel +27 11 607 1000 | Fax +27 11 607 1570 www.atns.com Directors: S Thobela (Chairman)
NP Mdawe (Chief Executive Officer)
JM Moholola (Chief Financial Officer)
KN Vundla, LN Ngema, ZG Myeza, JC Trembath
S Badat, KS Boqwana, N Kubheka, CR Burger, T Kgokolo

APPROVAL PAGE

TITLE : ICAO AMENDED ANNEX 14 OBSTACLE ASSESSMENT REPORT, FOR CAPE

WINELANDS AIRPORT

REPORT NUMBER : ATNS/ANNEX 14 - 04/10/2022

CLASSIFICATION : CONFIDENTIAL

SYNOPSIS : This report contains the results of the ICAO Annex 14 Obstacle

Assessment for Cape Winelands Airport, as part of ATNS' initial WGS84

survey project.

DISTRIBUTION : Refer to distribution page.

PREPARED BY : ATNS

COMPLETED BY : Graham Mondzinger (Obstacle Evaluator)

DATE : 04 October 2022

DISTRIBUTION PAGE

DISTRIBUTION: Surveyors ATNS

Francois Coetzee Senior Manager: AI (ATNS)

Obstacle Evaluators ATNS
Data Integrity Specialists ATNS
Project Manager FAWN

CONTENTS

1. INTRODUCTION	Page 5
1.1 PURPOSE	5
1.2 DATA USED	6
1.3 ELECTRONIC DATA	6
1.4 UNITS USED	6
1.5 RUNWAY COORDINATES	6
1.6 NAVIGATIONAL AIDS	6
2. ICAO ANNEX 14 EVALUATION	7
2.1 PURPOSE	7
2.2 ANNEX 14 OBSTACLE LIMITATION SURFACES (OLS)	8
2.3 AERODROME (RUNWAY) REFERENCE CODE	9
2.4 INFRINGEMENT OF OLS	11
2.5 ANNEX 14 OLS ASSESSMENT – FAWN	11-21
3. FLIGHT PROCEDURES	22
3.1 OIS AND OLS	22
3.2 INFORMATION ON ANY NEW OBSTACLE MUST INCLUDE:	22
3.3 VISUAL AIDS FOR DENOTING OBSTACLES	22
3.4 PRECISION APPROACH PATH INDICATOR (PAPI)	23
3.5 DAYLIGHT MARKINGS	23
4. CONCLUSION	23
5. ATTACHMENTS	24-28

12/4/1/2-1_FAWN Annex 14	Page 4 of 28	04 October 2022
Air Traffic and Navigation	Eastgate Office Park, Block C,	Directors: S Thobela (Chairman) NP Mdawe (Chief Executive Officer)

1. INTRODUCTION

1.1 PURPOSE

- 1.1.1 This report details the Annex 14 obstacle assessment that was done concerning obstacles as surveyed by the survey team of ATNS, at Cape Winelands Airport, South Africa, as part of the initial WGS-84 survey project.
- 1.1.2 The report is based on all obstacles to investigate their influence on existing or future instrument procedures and wherther these obstacles will have any effect on the Annex-14 surfaces. All obstacles were considered for the assessment to determine the effect on the aerodrome environment.
- 1.1.3 The effective utilisation of an aerodrome may be considerably influenced by natural features and man-made constructions inside and outside its boundary. These may result in limitations on the distance available for take-off and landing and on the range of meteorological conditions in which take-off and landing can be undertaken. For these reasons certain areas of the local airspace must be regarded as integral parts of the aerodrome environment. The degree of freedom from obstacles in these areas is very important.

1.1.4 An obstacle is defined as:

- a. Any object that stands on, or stands above, the specified surface of an obstacle restriction area which comprises the runway strips, runway end safety areas, clearways and taxiway strips; and.
- b. Any object that penetrates the ICAO Annex 14 Obstacle Limitation Surfaces (OLS), a series of surfaces that set the height limits of objects, around an aerodrome.
- 1.1.5 The method of assessing the significance of any existing or proposed obstacle within the aerodrome boundary or in the vicinity of the aerodrome is to establish the defined ICAO Annex 14 Obstacle Limitation Surfaces (OLS) particular to a runway and its intended use. In ideal circumstances all the ICAO Annex 14 Obstacle Limitation Surfaces (OLS) will be free from obstacles, but when a surface is infringed, any safety measures required by the RSA CAA will have regard to:
- a. The nature of the obstacle and its location relative to the surface origin, to the extended centreline of the runway or normal approach and departure paths and to existing obstructions
- b. The amount by which the surface is infringed;

ISO 9001 certified

- c. The volume and type of air traffic at the aerodrome; and
- d. The instrument approach procedures published for the aerodrome.

1.2 DATA USED

1.2.1 WGS-84 Survey Report for Cape Winelands Airport (ATNS Survey of 2022).

1.3 ELECTRONIC DATA

1.3.1 Obstacle data was obtained from ATNS Obstacle Evaluators Server (V:\Obstacle Evaluators\ Obstacle Evaluations\ Other Airports\ FAWN\ FAWN 2022). All this data was geodetically positioned into an an eTOD and Microstation drawing file. This file was then established as the base drawing for the project.

1.4 UNITS USED

- All heights used in this design are in meters, unless specified otherwise.
- All bearings are true bearings, unless otherwise specified.

1.5 PROPOSED RUNWAY COORDINATES

TABLE 1: RUNWAY DATA

Name	Latitude	Longitude	Elevation
THR-RWY01	S 33° 46′ 29.97″	E 018° 44′ 30.22413″	124.06m
THR-RWY19	S 33° 44′ 44.23444″	E 018° 43′ 57.49363″	94.35m
THR-RWY14	S 33° 46′ 15.44262″	E 018° 44′ 20.84196″	121.708m
THR-RWY32	S 33° 46′ 26.02905″	E 018° 44′ 48.37863″	124.59m

1.6 PROPOSED NAVIGATIONAL AIDS

- 1.6.1 The following proposed navigation facilities will be installed at this airport:
 - ILS (RWY 01)
 - ILS (RWY 19)

Eastgate Office Park, Block C,

2. ICAO ANNEX 14 EVALUATION

2.1 PURPOSE

- 2.1.1 The purpose of the Annex 14 Obstacle Limitation Surfaces (OLS) is to define the volume of airspace that should be ideally kept free or safeguarded from obstacles, and to take the necessary measures to ensure the safety of aircraft, and thereby the passengers and crews aboard them, while taking-off or landing, or while flying in the vicinity of an airport.
- 2.1.2 This is achieved by a process of checking proposed developments so as to:
 - Protect the blocks of air through which aircraft fly, by preventing penetration of these surfaces' lower limits;
 - Protect the integrity of radar and other electronic aids to air navigation, by preventing reflections and diffractions of the radio signals involved;
 - Protect visual aids, such as Approach and Runway lighting, by preventing them
 from being obscured, or preventing the installation of other lights which could
 be confused for them;
- 2.1.3 Under the terms of their license, as issued by the RSA CAA, airports are normally required to prevent new developments or extensions to existing structures from infringing the OLS. The OLS completely surrounds the aerodrome, but those surfaces aligned with the runway(s) used to protect aircraft landing or taking-off can be more limiting than those surrounding the rest of the aerodrome, particularly as you get closer to the aerodrome.

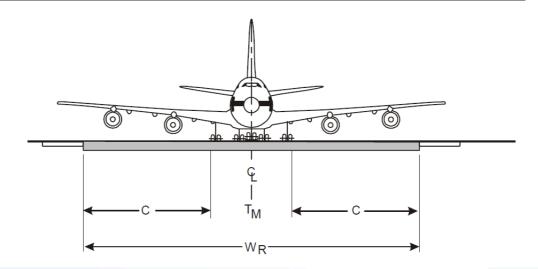
ISO 9001 certified

2.2 ANNEX 14 OBSTACLE LIMITATION SURFACES (OLS)

- 2.2.1 In ideal circumstances all the surfaces will be free from obstacles, but when a surface is infringed, any safety measures required by the RSA CAA will have regard to:
 - The nature of the obstacle and its location relative to the surface origin, to the
 extended centreline of the runway or normal approach and departure paths and
 to existing obstructions;
 - The amount by which the OLS is infringed;
 - The gradient presented by the obstacle to the surface origin;
 - The volume and type of air traffic at the aerodrome; and
 - The instrument approach procedures published for the aerodrome.

It is for this reason that accurate information on the location and height of the proposed development is required.

- 2.2.2 The specifications for the individual requirements are related by a two element reference code. In addition, specifications will vary with the designation of a runway as an instrument runway if it is served by one or more non-visual aids to approach and landing or as a visual runway, if it is not served by any non-visual aids to approach and landing. This ensures that the facilities and characteristics of an aerodrome are effectively related and match the needs of the aircraft for which the aerodrome intends to cater.
- 2.2.3 To determine the extent of the lateral, longitudinal, and sloping planes of the airspace and ground surfaces surrounding each runway that should be kept free of obstacles, a reference code is established. This code comprises of:
 - A number determined by selecting the higher value of the declared TODA or ASDA.
 - A letter which corresponds to the wingspan or main gear outer-wheel span, whichever is the more demanding, of the largest aircraft likely to be operating at the aerodrome.
- 2.2.4 The determination of a runway's reference code is for the identification of the horizontal and vertical parameters of the Obstacle Limitation Surfaces (OLS) associated with that runway, and are not intended to influence the pavement strength.



2.3 AERODROME (RUNWAY) REFERENCE CODE

TABLE 2: AERODROME REFERENCE CODES

Code element 1			Code element	2
Code number (1)	Aeroplane reference field length (2)	Code letter (3)	Wingspan (4)	Outer main gear wheel span ^a (5)
1	Less than 800 m	A	Up to but not including 15 m	Up to but not including 4.5 m
2	800 m up to but not including 1 200 m	В	15 m up to but not including 24 m	4.5 m up to but not including 6 m
3	1 200 m up to but not including 1 800 m	С	24 m up to but not including 36 m	6 m up to but not including 9 m
4	1 800 m and over	D	36 m up to but not including 52 m	9 m up to but not including 14 m
		Е	52 m up to but not including 65 m	9 m up to but not including 14 m
		F	65 m up to but not including 80 m	14 m up to but not including 16 m

a. Distance between the outside edges of the main gear wheels.

12/4/1/2-1	FAWN Annex	(14
------------	-------------------	-----

2.3.1 **RUNWAYS**

- 2.3.1.1 A runway is a rectangular area on a land aerodrome prepared for the landing and taking-off of aircraft. Separate criteria apply to a runway serving as a visual runway and to a runway serving as an instrument runway. The ability to meet the criteria will determine what length of runway may be declared for what purpose.
- 2.3.1.2 The length of runway provided is not directly determined by the Code. The aerodrome authority should declare distances for each runway direction. The declared distances are to be approved and promulgated by the RSA CAA.

2.3.2 Width

2.3.2.1 Runways both paved and unpaved should have the following minimum widths:

TABLE 3: RUNWAY WIDTHS

G 1			Code	letter		
Code number	Α	В	C	D	E	F
I^a	18 m	18 m	23 m	_	_	_
2^a	23 m	23 m	30 m	_	_	_
3	30 m	30 m	30 m	45 m	_	_
4	_	_	45 m	45 m	45 m	60 m

a. The width of a precision approach runway should be not less than 30 m where the code number is 1 or 2.

- 2.3.2.2 The combinations of code numbers and letters for which widths are specified have been developed for typical aeroplane characteristics.
- 2.3.2.3 The width of a precision approach runway should be not less than 30 m where the code number is 1 or 2.

2.4 INFRINGEMENT OF OLS

2.4.1 The aerodrome operator must monitor the OLS applicable to the aerodrome and report to the RSA CAA any infringement or potential infringement of the OLS.

Note: Aerodrome operators need to liaise with appropriate planning authorities and companies that erect tall structures, to determine potential infringements. Every effort should be made to implement the OLS standards and limit the introduction of new obstacles.

2.4.2 When a new obstacle is detected, the aerodrome operator must ensure that the information is passed on to pilots, through NOTAM, in accordance with the standards for aerodrome reporting procedures.

2.5 ANNEX 14 OBSTACLE LIMITATION SURFACES ASSESSMENT – FAWN

Annex-14 surface parameters: RWY 01/19 and RWY 14/32



FIGURE 1: PROPOSED RUNWAY LAYOUT AT CAPE WINELANDS AIRPORT

The following OLS are defined for Precision Runways:

- > Strip
- Conical Surface
- > Inner Horizontal Surface
- Outer Horizontal
- > Inner Approach Surface
- > Approach Surface
- > Transitional Surface
- > Inner Transitional Surface
- Balked Landing Surface
- > Take Off Climb
- ➤ Take Off Path Area (TOFPA)

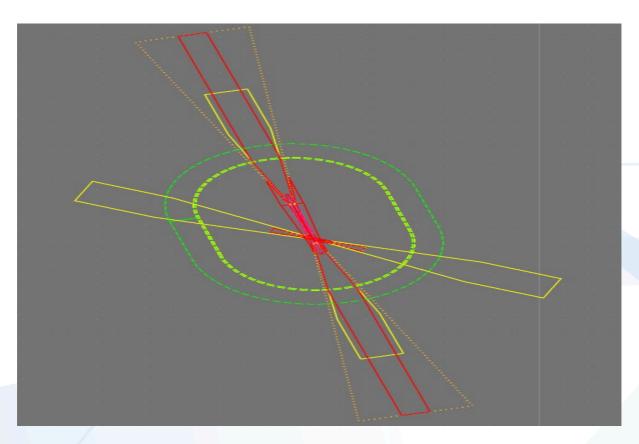


FIGURE 2: ANNEX 14 OBSTACLE LIMITATION SURFACES (OLS) AT CAPE WINELANDS AIRPORT

2.5.1 Runway data: RWY01

TABLE 4: RUNWAY 01 DIMENSIONS

RWY 01 (FAWN)		
Code	4	
THR01		
Latitude	S 33° 46′ 29.97″	
Longitude	E 018° 44′ 30.22413″	
Elevation	124.06m	
END01		
Latitude	S 33° 44′ 44.23444″	
Longitude	E 018° 43′ 57.49363″	
Elevation	94.35m	
Aerodrome		
Datum elevation	94.35m	
Code letter F	No	
Parameters		
Approach type	Precision	
Departure Track Heading Change > 15°	No	
Criteria applied	ICAO	

Annex-14 surface parameters:

The broad purpose of the OLS is to define a volume of airspace that is ideally kept free of obstacles in order to minimise the danger to aircraft during the final visual segment of an instrument approach procedure.

TABLE 5: RUNWAY 01 OLS DIMENSIONS

Strip		
Length	3120 m	
Width	280 m	
Cor	ical	
Slope	5 %	
Height	100 m	
Inner Horizontal		
Height	45 m	
Radius	4000 m	
Outer Horizontal		
Height	150 m	
Radius	15000 m	

12/4/1/2-1_FAWN Annex 14 Page 13 of 28

04 October 2022

Inner Approach		
Width	120 m	
Distance from THR	60 m	
Length	900 m	
Slope	2 %	
Appr	oach	
Length of inner edge	300 m	
Distance from THR	60 m	
Divergence (each side)	15 %	
First S	ection	
Length	3000 m	
Slope	2 %	
Second	Section	
Length	3600 m	
Slope	2.5 %	
Horizontal Section		
Length	8400 m	
Total length 15000 m		
Transitional		
Slope	14.3 %	
Inner Tra	insitional	
Slope	33.3 %	
Balked		
Length of inner edge	120 m	
Distance from THR 1800 m		
Divergence (each side)		
Slope	·	
Take Off Climb		
Length of inner edge	180 m	
Distance from runway end	60 m	
Divergence (each side)	12.5 %	
Final width	1200 m	
Length	15000 m	
Slope	2 %	

12/4/1/2-1_FAWN Annex 14	4
--------------------------	---

2.5.2 Runway data: RWY19

TABLE 6: RUNWAY 19 DIMENSIONS

RWY 19 (FAWN)		
Code	4	
THR19		
Latitude	S 33° 44′ 44.23444″	
Longitude	E 018° 43′ 57.49363″	
Elevation	94.35m	
END19		
Latitude	S 33° 46′ 29.97″	
Longitude	E 018° 44′ 30.22413″	
Elevation	124.06m	
Aerodrome		
Datum elevation	94.35m	
Code letter F	No	
Parameters		
Approach type	Precision	
Departure Track Heading Change > 15°	No	
Criteria applied	ICAO	

The following OLS are defined for Precision Approach Runway 19:

TABLE 7: RUNWAY 19 OLS DIMENSIONS

Strip		
Length	3120 m	
Width	280 m	
Со	nical	
Slope	5 %	
Height	100 m	
Inner H	orizontal	
Height	45 m	
Radius	4000 m	
Outer Horizontal		
Height	150 m	
Radius	15000 m	
Inner A	pproach	
Width	120 m	
Distance from THR	60 m	
Length	900 m	
Slope	2 %	

12/4/1/2-1_FAWN Annex 14 Page 15 of 28 04 October 2022

Approach					
Length of inner edge 300 m					
Distance from THR	60 m				
Divergence (each side)	15 %				
First S	Section				
Length	3000 m				
Slope	2 %				
Second	Section				
Length	3600 m				
Slope	2.5 %				
Horizont	al Section				
Length	8400 m				
Total length	15000 m				
Trans	itional				
Slope	14.3 %				
Inner Transitional					
Slope 33.3 %					
	Landing				
Length of inner edge	120 m				
Distance from THR	1800 m				
Divergence (each side)	10 %				
Slope	3.33 %				
Take O	ff Climb				
Length of inner edge 180 m					
Distance from runway end 60 m					
Divergence (each side)	12.5 %				
Final width	1200 m				
Length 15000 m					
Slope	2 %				

The following OLS are defined for Non-Instrument Runway:

- > Strip
- Conical Surface
- > Inner Horizontal Surface
- Approach Surface
- > Transitional Surface
- > Take Off Climb
- > Take Off Path Area (TOFPA)

12/4/1/2-1_FAWN Annex 14	Page 16 of 28	04 October 2022
Air Traffic and Navigation	Eastgate Office Park, Block C,	Directors: S Thobela (Chairman)

2.5.3 Runway data: RWY14

TABLE 8: RUNWAY 14 DIMENSIONS

RWY 14 (FAWN)					
Code	1				
THR14					
Latitude	S 33° 46′ 15.44262″				
Longitude	E 018° 44′ 20.84196″				
Elevation	121.708m				
END14					
Latitude	S 33° 46′ 26.02905″				
Longitude	E 018° 44′ 48.37863″				
Elevation	124.59m				
Aerodrome					
Datum elevation	121.708m				
Code letter F	No				
Parameters					
Approach type	Non-Instrument				
Departure Track Heading Change > 15°	No				
Criteria applied	ICAO				

The following OLS are defined for Non-Instrument Runway 14:

TABLE 9: RUNWAY 14 OLS DIMENSIONS

Strip						
Length	900 m					
Width	150 m					
Со	nical					
Slope	5 %					
Height	75 m					
Inner H	orizontal					
Height	45 m					
Radius	4000 m					
Арр	roach					
Length of inner edge	150 m					
Distance from THR	60 m					
Divergence (each side)	15 %					
First 9	Section					
Length	3000 m					
Slope	3.33 %					
Trans	sitional					
Slope	14.3 %					

12/4/1/2-1_FAWN Annex 14 Page 17 of 28

04 October 2022

Take Off Climb				
Length of inner edge	180 m			
Distance from runway end	60 m			
Divergence (each side)	12.5 %			
Final width	1200 m			
Length	15000 m			
Slope	2 %			

2.5.4 Runway data: RWY32

TABLE 10: RUNWAY 32 DIMENSIONS

RWY 32 (FAWN)					
Code	1				
THR32					
Latitude	S 33° 46′ 26.02905″				
Longitude	E 018° 44′ 48.37863″				
Elevation	124.59m				
END32					
Latitude	S 33° 46′ 15.44262″				
Longitude	E 018° 44′ 20.84196″				
Elevation	121.708m				
Aerodrome					
Datum elevation	121.708m				
Code letter F	No				
Parameters					
Approach type	Non-Instrument				
Departure Track Heading Change > 15°	No				
Criteria applied	ICAO				

The following OLS are defined for Non-Instrument Runway 32:

TABLE 11: RUNWAY 32 OLS DIMENSIONS

Strip							
Length	900 m						
Width	150 m						
Cor	nical						
Slope	5 %						
Height	75 m						
Inner Ho	Inner Horizontal						
Height	45 m						
Radius	4000 m						

12/4/1/2-1_FAWN Annex 14 Page 18 of 28 04 October 2022

Approach					
Length of inner edge	150 m				
Distance from THR	60 m				
Divergence (each side)	15 %				
First S	ection				
Length	3000 m				
Slope	3.33 %				
Trans	itional				
Slope	14.3 %				
Take O	ff Climb				
Length of inner edge	180 m				
Distance from runway end	60 m				
Divergence (each side) 12.5 %					
Final width	1200 m				
Length	15000 m				
Slope	2 %				

2.5.5 Assessment Results: OBSTACLES

TABLE 12: THE OBSTACLES IN THE TABLE BELOW PENETRATE THE ANNEX-14 SURFACES FOR FAWN

SURAFCE	TARGET	OBSTACLE	PENETRATION	LATITUDE	LONGITUDE	ELEVATION
Balked Landing	01	_RWY21 PP5	-15.043	S 33° 45' 32.9882''	E 018° 44' 10.2920''	124.161
Inner transitional	01	_HANGER_A1	-4.492	S 33° 46' 15.2485''	E 018° 44' 29.1453''	133.502
Inner transitional	01	_PP1	-9.011	S 33° 45' 54.6489''	E 018° 44' 22.1157''	126.789
Strip	01-19	_FUEL FARM	-10.055	S 33° 46' 15.8166''	E 018° 44' 31.0346''	130.433
Strip	01-19	_HANGER_2	-5.676	S 33° 46′ 13.9655′′	E 018° 44' 29.9791"	125.507
Strip	01-19	_HANGER_A1	-13.381	S 33° 46' 15.2485''	E 018° 44' 29.1453''	133.502
Strip	01-19	_MET STATION	-14.495	S 33° 46' 04.8552''	E 018° 44' 23.1048''	131.535
Strip	01-19	_PP1	-12.493	S 33° 45' 54.6489''	E 018° 44' 22.1157''	126.789
Strip	01-19	_PP2	-11.716	S 33° 45' 55.5070''	E 018° 44' 23.9162''	126.341
Strip	01-19	_RWY21 PP2	-12.826	S 33° 45' 34.6972''	E 018° 44' 18.0334''	121.635
Strip	01-19	_RWY21 PP3	-14.229	S 33° 45' 34.0683''	E 018° 44' 15.1213''	122.707
Strip	01-19	_RWY21 PP4	-15.732	S 33° 45' 33.5537''	E 018° 44' 12.8416''	123.945
Strip	01-19	_RWY21 PP5	-16.242	S 33° 45' 32.9882''	E 018° 44' 10.2920''	124.161
Strip	01-19	_RWY21_TREE1	-25.23	S 33° 45' 44.8538''	E 018° 44' 18.5602''	136.744
Strip	01-19	_T64_BLD	-7.88	S 33° 45' 53.9976''	E 018° 44' 22.6102''	122.033
Strip	01-19	_T65_BLD	-7.875	S 33° 45' 51.4390''	E 018° 44' 19.5945''	121.182
Strip	01-19	_TREE_1	-14.034	S 33° 46' 16.9969''	E 018° 44' 32.0501''	134.781
Strip	01-19	_TREE_2	-16.232	S 33° 46' 16.9874''	E 018° 44' 32.1565"	136.983

12/4/1/2-1_FAWN Annex 14 Page 19 of 28 04 October 2022

ISO 9001 certified

Strip	01-19	_WINDSOCK MID	-9.089	S 33° 46' 19.7678''	E 018° 44' 25.8315''	130.212
Transitional	01	_HANGER_3	-6.551	S 33° 46' 14.7972''	E 018° 44' 32.4135''	129.829
Transitional	01	_PP3	-10.472	S 33° 45' 55.9201"	E 018° 44' 25.9506''	126.209
Transitional	01	_RWY21 PP1	-4.867	S 33° 45' 35.3422"	E 018° 44' 20.9663''	119.841
Transitional	01	_TANK_2	-0.22	S 33° 46' 13.7969''	E 018° 44' 34.6868''	132.567
Transitional	01	_TREE_3	-8.038	S 33° 46' 17.0056''	E 018° 44' 34.0187''	135.272
Transitional	01	_WATER TANK	-2.685	S 33° 46' 11.0727''	E 018° 44' 32.7418''	130.280
Transitional	01	_HANGER_A4	-4.349	S 33° 46' 12.4504''	E 018° 44' 31.5988''	126.649
Transitional	01	_OFFICE	-5.433	S 33° 46' 11.9595''	E 018° 44' 31.7976''	128.865
Balked Landing	19	_PP1	-1.249	S 33° 45' 54.6489''	E 018° 44' 22.1157''	126.789
Balked Landing	19	_RWY21_TREE1	-21.698	S 33° 45' 44.8538''	E 018° 44' 18.5602''	136.744
TOFPA	19	_W_RESEVOIR	-3.994	S 33° 47' 33.2716"	E 018° 44' 46.1067''	151.944
Transitional	19	_HANGER_3	-6.551	S 33° 46' 14.7972''	E 018° 44' 32.4135''	129.829
Transitional	19	_PP3	-10.472	S 33° 45' 55.9201"	E 018° 44' 25.9506''	126.209
Transitional	19	_RWY21 PP1	-4.867	S 33° 45' 35.3422"	E 018° 44' 20.9663''	119.841
Transitional	19	_TANK_2	-0.22	S 33° 46' 13.7969''	E 018° 44' 34.6868''	132.567
Transitional	19	_TREE_3	-8.038	S 33° 46' 17.0056''	E 018° 44' 34.0187''	135.272
Transitional	19	_WATER TANK	-2.685	S 33° 46' 11.0727''	E 018° 44' 32.7418''	130.280
Transitional	19	_HANGER_A4	-4.349	S 33° 46' 12.4504''	E 018° 44' 31.5988''	126.649
Transitional	19	_OFFICE	-5.433	S 33° 46' 11.9595"	E 018° 44' 31.7976''	128.865
Take-off Climb	14	_RWY32_TREE4	-11.374	S 33° 46' 28.5783"	E 018° 44' 52.6322''	141.078
Take-off Climb	14	_RWY32_TREE5	-4.528	S 33° 46' 28.3862"	E 018° 44' 53.6418''	135.288
Take-off Climb	14	_RWY32_TREE6	-2.914	S 33° 46' 28.0738''	E 018° 44' 55.0798''	135.154
TOFPA	14	_RWY32 F1	-1.487	S 33° 46' 26.0294"	E 018° 44' 49.0623''	126.269
TOFPA	14	_RWY32_TREE2	-15.309	S 33° 46' 28.8997"	E 018° 44' 50.7390''	141.005
TOFPA	14	_RWY32_TREE3	-15.126	S 33° 46' 28.7279''	E 018° 44' 51.7451''	141.078
TOFPA	14	_RWY32_TREE4	-14.901	S 33° 46' 28.5783"	E 018° 44' 52.6322''	141.078
TOFPA	14	_RWY32_TREE5	-8.857	S 33° 46' 28.3862"	E 018° 44' 53.6418''	135.288
TOFPA	14	_RWY32_TREE6	-8.368	S 33° 46' 28.0738''	E 018° 44' 55.0798''	135.154
TOFPA	14	_RWY32_TREE1	-9.958	S 33° 46' 29.1705"	E 018° 44' 49.1117''	135.239
Strip	14-32	_RWY32 F1	-1.679	S 33° 46' 26.0294"	E 018° 44' 49.0623''	126.269
Transitional	14	_TREE_1	-2.608	S 33° 46' 16.9969''	E 018° 44' 32.0501''	134.781
Transitional	14	_TREE_2	-4.519	S 33° 46' 16.9874"	E 018° 44' 32.1565''	136.983
Transitional	14	_WINDSOCK MID	-0.394	S 33° 46' 19.7678''	E 018° 44' 25.8315''	130.212
Approach	32	_RWY32_TREE4	-11.374	S 33° 46' 28.5783"	E 018° 44' 52.6322''	141.078
Approach	32	_RWY32_TREE5	-4.528	S 33° 46' 28.3862"	E 018° 44′ 53.6418′′	135.288
Approach	32	_RWY32_TREE6	-2.914	S 33° 46' 28.0738''	E 018° 44' 55.0798''	135.154
Transitional	32	_RWY32_TREE2	-9.558	S 33° 46' 28.8997''	E 018° 44' 50.7390''	141.005
Transitional	32	_RWY32_TREE3	-12.119	S 33° 46' 28.7279"	E 018° 44' 51.7451"	141.078

12/4/1/2-1_FAWN Annex 14

Page 20 of 28

04 October 2022

Air Traffic and Navigation Services Company SOC Limited

Company Reg. No. 1993/004150/30 ISO 9001 certified Eastgate Office Park, Block C, South Boulevard Road, Bruma Private Bag X15, Kempton Park 1620 Tel +27 11 607 1000 | Fax +27 11 607 1570 www.atns.com Directors: S Thobela (Chairman)
NP Mdawe (Chief Executive Officer)
JM Moholola (Chief Financial Officer)
KN Vundla, LN Ngema, ZG Myeza, JC Trembath
S Badat, KS Boqwana, N Kubheka, CR Burger, T Kgokolo

Transitional	32	_TREE_1	-2.608	S 33° 46' 16.9969''	E 018° 44' 32.0501"	134.781
Transitional	32	_TREE_2	-4.519	S 33° 46' 16.9874''	E 018° 44' 32.1565"	136.983
Transitional	32	_WINDSOCK MID	-0.394	S 33° 46' 19.7678''	E 018° 44' 25.8315''	130.212
Inner Horizontal	FAWN	_RWY01_PYLON MID1	-6.241	S 33° 48' 03.3797''	E 018° 45' 25.0766"	145.591
Inner Horizontal	FAWN	_RWY01_PYLON MID2	-10.101	S 33° 48' 03.9818''	E 018° 45' 09.9010''	149.451
Inner Horizontal	FAWN	_RWY01_PYLON MID3	-7.808	S 33° 48' 04.5311"	E 018° 44' 56.6150''	147.158
Inner Horizontal	FAWN	_RWY32_TREE2	-1.655	S 33° 46' 28.8997''	E 018° 44' 50.7390''	141.005
Inner Horizontal	FAWN	_RWY32_TREE3	-1.728	S 33° 46' 28.7279''	E 018° 44' 51.7451''	141.078
Inner Horizontal	FAWN	_RWY32_TREE4	-1.728	S 33° 46' 28.5783"	E 018° 44' 52.6322''	141.078
Inner Horizontal	FAWN	_STEEL TANK	-3.989	S 33° 46' 48.8511"	E 018° 43' 58.7999''	143.339
Inner Horizontal	FAWN	_W_RESEVOIR	-12.594	S 33° 47' 33.2716"	E 018° 44' 46.1067''	151.944
Conical	FAWN	_TRANS_1 TWR	-83.139	S 33° 47' 21.1688''	E 018° 41' 46.3120''	247.647
Conical	FAWN	_TRANS_2 TWR	-87.374	S 33° 47' 14.2176"	E 018° 41' 41.2943''	254.510
Conical	FAWN	_TRANS_3 TWR	-81.581	S 33° 47' 18.4075"	E 018° 41' 32.9621''	260.895

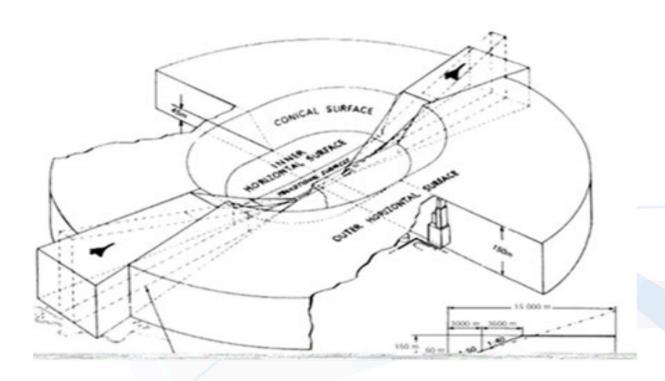


FIGURE 3: The Annex 14 volume 1 Obstacle Limitation Surfaces (OLS) shown in the picture above: protects aircraft for 15 KM radius around every aerodrome

Air Traffic and Navigation
Services Company SOC Limited

Eastgate Office Park, Block C,
South Boulevard Road, Bruma

Company Reg. No. 1993/004150/30 ISO 9001 certified

12/4/1/2-1_FAWN Annex 14

Eastgate Office Park, Block C, South Boulevard Road, Bruma Private Bag X15, Kempton Park 1620 Tel +27 11 607 1000 | Fax +27 11 607 1570 www.atns.com

Page 21 of 28

Directors: S Thobela (Chairman) NP Mdawe (Chief Executive Officer) JM Moholola (Chief Financial Officer) KN Vundla, LN Ngema, ZG Myeza, JC Trembath S Badat, KS Boqwana, N Kubheka, CR Burger, T Kgokolo

04 October 2022

3. FLIGHT PROCEDURES

3.1 OIS AND OLS

- 3.1.1 The PANS-OPS Obstacle Identification Surfaces (OIS) are generally above the Annex 14 OLS and are designed to safeguard an aircraft from collision with obstacles when the aircraft's flight may be guided solely by instruments in conditions of poor visibility. They apply minimum obstacle clearance (MOC) to structures, terrain or other natural features within the areas to determine the limiting altitude at which a manoeuvre can be safely executed. As a result, PANS-OPS surfaces cannot be infringed under any circumstance.
- 3.1.2 In this respect, the OLS and PANS-OPS surfaces provide protection for aircraft operations in two quite different circumstances, the first when the pilot can see if there is an obstacle and the second when the pilot cannot.
- 3.1.3 The newly surveyed obstacles were evaluated against the present and newly designed procedures and found not to have any impact.

3.2 INFORMATION ON ANY NEW OBSTACLE MUST INCLUDE:

- The nature of the obstacle for instance structure or machinery;
- Distance and bearing of the obstacle from the start of the take-off end of the runway, if the obstacle is within the take-off area, or the ARP;
- Height of the obstacle in relation to the aerodrome elevation; and
- If it is a temporary obstacle the time it is an obstacle.

3.3 VISUAL AIDS FOR DENOTING OBSTACLES

- 3.3.1 The marking and/or lighting of obstacles are intended to reduce hazards to aircraft by indicating the presence of the obstacles. It does not necessarily reduce operating limitations which may be imposed by an obstacle.
- 3.3.2 Aeronautical Ground Lighting (AGL) provides flight crew with location, orientation and alignment information in adverse visibility conditions and at night. Below is a textual explanation of a Precision Approach Path Indicator (PAPI), as used by the pilot during final approach to land. The units are normally installed on the left hand side of the runway, viewed from the approach; a right hand installation is permitted if it is not practicable to position them on the left or if a second set is required.

ISO 9001 certified

3.4 PRECISION APPROACH PATH INDICATOR (PAPI).

- 3.4.1 These are protected by:
- Preventing them from being obscured;
- Preventing the installation and display of other lights, particularly street lighting, in a pattern or colour which could be mistaken for visual aids;
- Preventing a high level of background lighting which could diminish their effectiveness;
- Preventing other lights which could confuse pilots.
- 3.4.2 All structures and buildings in and around an airport, treated as an obstacle, should be clearly marked and identified in accordance with the requirements of ICAO Annex 14, Chapter 6. Below is a textual explanation of the day and night markings of buildings and obstacles, in accordance with Annex 14.

3.5 **DAYLIGHT MARKINGS**

3.5.1 Steady burning, red, aeronautical low intensity type "A" obstruction lights must be fitted to the masts, to clearly define the outline of the structures, in accordance with the requirements of ICAO Annex 14, Chapter 6. The obstacles should be clearly marked for day and night operations as an obstruction, as per ICAO Annex 14 requirements.

4. CONCLUSION

- 4.1 All the obstacles listed in this report are **not clear** of the annex-14 surfaces, and need to be addressed (in terms of Annex-14 Lighting and Marking) to ensure that the proposed/future procedures at Cape Winelands Airport will be addressed.
- 4.2 We would like to recommend that this office be consulted on a regular basis before any installation of new structures in and around the aerodrome so that Annex-14 obstacle assessment can be done prior to installations.
- 4.3 Also, the PANS-OPS office should be consulted when there are modifications, painting and surface reconstructions at all airports.

This concludes the ICAO Annex 14 Obstacle Assessment done for Cape Winelands Airport.

This report was compiled by:

Graham Mondzinger

grahamm@atns.co.za

T: 011 607 1132

5. ATTACHMENT A

A.1 ALL SURVEY OBSTACLE DATA

Obstacle	WGS-84 Lat.	WGS-84 Long.	Height MSL(m)	Description
Obstacle	VVO3-84 Lat.	WG3-84 Long.	IVISE(III)	Measured on ground
				level. 43.454m AGL to top
COMMCO TWR	S334721.29248	E0184218.463	135.047	of lightning conductor.
СТС				Measured on ground
MAST_FISANTE				level. 26.904m AGL to top
K	S334720.34056	E0184247.09688	117.985	of lightning conductor.
				Measured on ground
DEEPKLOO_				level. 6.700m AGL to top
HANGER	S334610.61777	E0184435.54492	127.895	of hanger
				Measured on ground
				level. 40.124m AGL to
			105 555	top of lightning
FLOOD_L1	S334706.47227	E0184303.40684	135.777	conductor.
				Measured on ground
ELOOD 13	C224714 CCC91	F01942F6 92674	120 45	level. 40.336m AGL to top
FLOOD_L2	S334714.66681	E0184256.83674	138.45	of lightning conductor. Measured on ground
				level. 8.100m AGL to top
FUEL FARM	S334615.81656	E0184431.03463	130.433	of tank.
TOLLTANIVI	3334013.81030	10104431.03403	130.433	Measured on ground
				level. 3.800m AGL to top
HANGER 1	S334609.10341	E0184436.34158	124.426	of roof.
_				Measured on ground
				level. 3.500m AGL to top
HANGER_2	S334613.96552	E0184429.97911	125.507	of hanger.
				Measured on ground
				level. 7.300m AGL to top
HANGER_3	S334614.79724	E0184432.41353	129.829	of hanger.
				Measured on ground
				level. 4.000m AGL to top
HANGER_4	S334615.40594	E0184438.52656	126.625	of hanger.
				Measured on ground
LIANGED AND	6224644 25222	50404422 7222	407.001	level. 5.000m AGL to top
HANGER_4 N	S334614.85803	E0184433.72924	127.804	of roof apex.
				Measured on ground
HANGER 5 N	S334615.41126	E0184435.08827	126.599	level. 3.800m AGL to top of roof apex.
HANGER_5 IV	3334013.41120	EU104433.U0027	120.599	or roor apex.

12/4/1/2-1 FAWN Annex 14	Page 24 of 28	04 October 2022

ISO 9001 certified

				Measured on ground
HANGER_5 S	S334616.98842	E0184438.64063	126.668	level. 3.800m AGL to top of roof apex.
				Measured on ground
HANGER A1	S334615.24846	E0184429.14526	133.502	level. 11.000m AGL to top of hanger.
_				Measured on ground
HANGER A8	S334608.84758	E0184433.53343	124.998	level. 3.800m AGL to top of roof.
TIANGEN_A6	3334008.84738	20104433.33343	124.558	Measured on ground
			404 505	level. 11.500m AGL to top
MET STATION	S334604.85519	E0184423.10485	131.535	of lightning conductor. Measured on ground
				level. 8.600m AGL to top
PP1	S334554.64887	E0184422.11569	126.789	of power line pole.
				Measured on ground level. 9.100m AGL to top
PP2	S334555.507	E0184423.9162	126.341	of power line pole.
				Measured on ground
PP3	S334555.92009	E0184425.95057	126,209	level. 9.500m AGL to top of power line pole.
113	3334333.32003	20104423.33037	120.203	Measured on ground
				level. 8.700m AGL to top
PP4	S334556.53244	E0184429.01251	125.148	of power line pole.
				Measured on ground level. 8.700m AGL to top
PP5	S334556.46701	E0184429.185	125.138	of power line pole.
				Measured on ground
DDC	6224555 2400	F0194422 04C17	125.026	level. 8.700m AGL to top
PP6	S334555.3199	E0184432.04617	125.036	of power line pole. Measured on ground
				level. 9.200m AGL to top
PP7	S334553.49624	E0184433.47765	124.315	of power line pole.
				Measured on ground level. 9.4\00m AGL to top
PP8	S334551.70701	E0184434.88406	124.113	of power line pole.
				Measured on ground
PP9	\$224540 76150	E0184436.42592	123.498	level. 8.700m AGL to top
	S334549.76158	EU104430.42592	123.498	of power line pole. Measured on ground
RWY01_PYLON				level. 22.500m AGL bto
MID1	S334803.37967	E0184525.07657	145.591	top of pylon.
RWY01_PYLON				Measured on ground level. 22.100m AGL bto
MID2	S334803.98179	E0184509.90096	149.451	top of pylon.

12/4/1/2-1_FAWN Annex 14

Page 25 of 28

04 October 2022

RWY01_PYLON				Measured on ground level. 21.500m AGL bto
MID3	S334804.53109	E0184456.61499	147.158	top of pylon.
RWY01_PYLON				Measured on ground level. 21.500m AGL bto
MID4	S334805.19188	E0184439.89617	130.342	top of pylon.
D)40/4 4 54	622464242747	50404446 25047	422.670	Measured on ground level. 1.700m AGL to top
RWY14 F1	S334612.12747	E0184416.25047	122.679	of fence.
				Measured on ground level. 1.700m AGL to top
RWY14 F2	S334612.31205	E0184416.18311	122.71	of fence.
RWY32 F1	S334626.02941	E0184449.06228	126.269	Measured on ground level. 1.700m AGL to top of fence.
10015211	3334020102341	20101113100220	1201203	Measured on ground
RWY21 PP1	5224525 24217	F0194420 06621	110.941	level. 9.100m AGL to top
KVV 121 PP1	S334535.34217	E0184420.96631	119.841	of power line pole.
				Measured on ground level. 9.100m AGL to top
RWY21 PP2	C224E24 C0724	F0104410 02220	121.635	•
RVVYZI PPZ	S334534.69724	E0184418.03338	121.635	of power line pole.
				Measured on ground level. 9.100m AGL to top
RWY21 PP3	S334534.06829	E0184415.12133	122.707	of power line pole.
KWIZIFFS	3334334.00823	10104415.12155	122.707	Measured on ground
				level. 9.100m AGL to top
RWY21 PP4	S334533.5537	E0184412.84157	123.945	of power line pole.
IVVIZIII 4	3334333.3337	20104412.04137	123.543	Measured on ground
				level. 9.100m AGL to top
RWY21 PP5	S334532.98821	E0184410.29199	124.161	of power line pole.
				Measured on ground
				level. 21.800m AGL to top
RWY21_TREE1	S334544.8538	E0184418.56021	136.744	of tree.
				Measured on ground
				level. 15.800m AGL to top
RWY32_TREE2	S334628.89975	E0184450.73903	141.005	of tree.
				Measured on ground
				level. 15.800m AGL to top
RWY32_TREE3	S334628.72793	E0184451.7451	141.078	of tree.
				Measured on ground
DIAWAA TOEFA	6224626 5762	F04044F2 62246	4.44.070	level. 15.800m AGL to top
RWY32_TREE4	S334628.57828	E0184452.63218	141.078	of tree.
				Measured on ground level. 10.000m AGL to top
RWY32_TREE5	S334628.38623	E0184453.6418	135.288	of tree.

12/4/1/2-1_FAWN Annex 14 Page 26 of 28 04 October 2022

				Measured on ground
				level. 10.000m AGL to top
RWY32_TREE6	S334628.07383	E0184455.07977	135.154	of tree.
				Measured on ground
				level. 10.000m AGL to top
RWY32_TREE1	S334629.1705	E0184449.11172	135.239	of tree.
				Measured on ground
				level. 10.000m AGL to top
TANK_2	S334613.7969	E0184434.68682	130.847	of water tank.
				Measured on ground
CENTER TIME	6004004 75400	50404007 4004	400 460	level. 117.644m AGL to
SENTEC TWR	S334201.75182	E0184227.4831	189.462	top of tower.
				Measured on ground
CTEEL TANK	6224640.0544	50404250 70007	4.42.220	level. 23.600m AGL to top
STEEL TANK	S334648.8511	E0184358.79987	143.339	of tank.
				Measured on ground
T64 BLD	S334553.99756	E0184422.6102	122.033	level. 4.600m AGL to top of building.
104_BLD	3534333.99730	E0104422.0102	122.033	Measured on ground
				level. 3.800m AGL to top
T65 BLD	S334551.43899	E0184419.59449	121.182	of building.
103_000	3334331.43033	10104413.33443	121.102	Measured on ground
				level. 4.100m AGL to top
T66_BLD	S334555.85039	E0184428.48304	120.26	of building.
100_525	333 1333 1333	20201120110001	120.20	Measured on ground
				level. 150.000m AGL to
TRANS 1 TWR	S334721.16879	E0184146.31199	247.647	top of tower.
				Measured on ground
				level. 150.000m AGL to
TRANS_2 TWR	S334714.21765	E0184141.2943	254.51	top of tower.
				Measured on ground
				level. 150.000m AGL to
TRANS_3 TWR	S334718.40755	E0184132.96212	260.895	top of tower.
				Measured on ground
				level. 12.000m AGL to top
TREE_1	S334616.99688	E0184432.05008	134.781	of tree.
				Measred on ground level.
				14.300m AGL to top of
TREE_2	S334616.98738	E0184432.15648	136.983	tree.
				Measred on ground level.
				12.000m AGL to top of
TREE_3	S334617.00559	E0184434.01872	135.272	tree.
				Measured on ground
W DECEMOIS	6224722 27467	F0404446 40677	454.044	level. 27.854m AGL to top
W_RESEVOIR	S334733.27165	E0184446.10675	151.944	of lightning conductor.

12/4/1/2-1_FAWN Annex 14

Page 27 of 28

04 October 2022

Air Traffic and Navigation Services Company SOC Limited

Company Reg. No. 1993/004150/30 ISO 9001 certified Eastgate Office Park, Block C, South Boulevard Road, Bruma Private Bag X15, Kempton Park 1620 Tel +27 11 607 1000 | Fax +27 11 607 1570 www.atns.com Directors: S Thobela (Chairman)
NP Mdawe (Chief Executive Officer)
JM Moholola (Chief Financial Officer)
KN Vundla, LN Ngema, ZG Myeza, JC Trembath
S Badat, KS Boqwana, N Kubheka, CR Burger, T Kgokolo

WATER TANK	\$334611.07268	E0184432.74179	130.28	Measured on ground level. 8.700m AGL to top of tank.
WINDSOCK MID	\$334619.76778	E0184425.83146	130.212	Measured on ground level. 7.400m AGL to top of pole.
TANK_2	\$334613.7969	E0184434.68682	132.567	Measured on ground level. 10.000m AGL to top of water tank.
HANGER_A3	S334611.05434	E0184432.33481	125.596	Measured on groun level. 4.000m AGL to top of hanger roof.
HANGER_A4	\$334612.45042	E0184431.59879	126.649	Measured on ground level. 4.600m AGL to top of hanger roof.
OFFICE	\$334611.95953	E0184431.79759	128.865	Measured on ground level. 6.900m AGL to top of office roof apex.