

Borehole Yield and Quality Testing at Elgin Free Range Chickens Agri Operations, Lottershof Farm, Caledon

Executive Summary

GEOSS South Africa (Pty) Ltd was appointed by Willie Benson from Elgin Free Range Chickens Agri Operations to conduct yield and groundwater quality testing of one borehole at Lottershof farm, Caledon. The yield testing was undertaken by ATS under the management and supervision of GEOSS SA from the 30th of July to the 3rd of August 2024. This included a Step Test, CDT and Recovery Test at the borehole and sampling of the groundwater for chemical analysis. It is recommended that groundwater abstraction occur within the below-mentioned parameters from the tested borehole. Aquifer over-abstraction is unlikely to occur if these rates are adhered to and if the borehole is managed through long-term monitoring data.

Borehole Details					
Borehole	Latitude	Longitude	Borehole Depth	Inner Diameter (mm)	
Name	(DD, WGS84)	(DD, WGS84)	(m)	inner Diameter (inin)	
ECA_BH1	-34.30790°	19.47264°	138.6	177	
	A	bstraction Recomme	ndations		
Borehole	Abstraction rate	Abstraction	Recovery	Possible Volume	
Name	1	Duration	Duration	Abstracted	
Name	(L/s)	(hrs)	(hrs)	(L/d)	
ECA_BH1	1.5	24	0	129 600	
	Pump Installation Details				
Borehole	Pump Installation	Critical Water	Dynamic Water	Rest Water Level	
Name	Depth	Level	Level		
Ivallie	(mbgl)	(mbgl)	(mbgl)*	(mbgl)	
ECA_BH1	66	63	29	8.23	

^{*} Typical water level expected during long-term production

Through long term water level monitoring data, the abstraction volumes can be optimised by adjusting the abstraction rate, if required. It is recommended that the borehole is equipped with a variable frequency drive. This enables adjustments to the flow rate to be made if required, as determined by the hydrogeological analysis of water level and flow rate monitoring data.

From the laboratory results, groundwater from ECA_BH1 is of poor quality for potable use. The primary issue is elevated turbidity, measured at 27.3 NTU, which exceeds the SANS 241-1:2015 aesthetic standard. This level of turbidity is likely due to fine sediments entering the borehole, and it causes aesthetic issues such as cloudiness in the water. Although some of the turbidity may clear up during borehole development, the presence of elevated iron (0.549 mg/L) poses additional concerns. High iron levels can lead to aesthetic problems like red staining on walls and infrastructure, and they increase the risk of iron biofouling. If not managed properly, biofouling could clog the borehole and associated abstraction infrastructure.

To address the potential for iron to clog the borehole and abstraction infrastructure, it is recommended to maintain a constant and continuous pumping schedule as much as possible. Thus, should a daily volume of less than 129 600 L/d be required, it is recommended to decrease the pumping rate and not the pumping duration. By pumping continuously instead of on a stop-start schedule, iron oxidation in the borehole is minimized, decreasing the amount of iron precipitation inside the boreholes and pumps.

To facilitate monitoring and informed management of the borehole, it is recommended to equip borehole with the following monitoring infrastructure and equipment:

- Installation of a 32 mm (inner diameter, class 10) observation pipe from the pump depth to the surface, closed at the bottom and slotted for the bottom 5 10 m.
- Installation of an electronic water level logger (for automated water level monitoring)
- Installation of a sampling tap (to monitor water quality)
- Installation of a flow volume meter (to monitor abstraction rates and volumes)

This report is an important document for obtaining the legal compliance with regard to the use of the groundwater with the Department of Water and Sanitation, but does not constitute a Geohydrological Assessment report in support of a WULA, which would need to incorporate information from this report.

Client Information:

Prepared for	Elgin Free Range Chickens Agri Operations
Contact Person	Willie Benson
Contact Email	willieb@efrc.co.za
Contact Number	072 587 4537

Author Information:

Prepared by	GEOSS South Africa (Pty) Ltd
	Unit 12, Technostell Building
	9 Quantum Street
	TechnoPark
	Stellenbosch 7600
Contact Email	info@geoss.co.za
Contact Number	(021) 880 1079

Document Information and History:

Report Name	Borehole Yield and Quality Testing at Elgin Free Range Chickens Agri Operations, Lottershof Farm, Caledon		
Report No	2024/08-19		
Suggested Citation	GEOSS (2024). Borehole Yield and Quality Testing at Elgin Free Range Chickens Agri Operations, Lottershof Farm, Caledon. GEOSS Report Number: 2024/08-19. GEOSS – South Africa (Pty) Ltd. Stellenbosch, South Africa.		
GEOSS Project Number	2019_06-3569_L		
Cover Photo	Cover photo taken during yield testing		
Issue	Version	Date	Reviewed by
1	1.0	15 August 2024	Ashleigh Lakshuman

Principal Author(s) and Reviewer(s):

	Principal Author	Principal Reviewer
	Algens	A.Lakshuman
Name	Reuben Lazarus	Ashleigh Lakshuman
Qualification	MSc (Geology – Environmental Geochemistry)	MSc (Environmental and Water Science)
SACNASP No.	120711	131887
Registration	Earth Science (Pr.Sci.Nat)	Earth Science (Can.Sci.Nat)

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of Elgin Free Range Chickens Agri Operations, and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

Table of Contents

Exe	ecutive Summary	ii
1	Introduction	1
2	Yield Testing	1
2	.1 Methodology	1
2	.2 Yield Testing at AB_BH1	4
3	Water Quality Analysis	8
4	Recommendations	13
5	References	15
6	Appendix A: Borehole Log	16
7	Appendix B: Yield Test Data	18
8	Appendix C: Water Quality	23
9	Appendix D: Monitoring Infrastructure Diagram	26
10	Appendix E: Yield Test Data Analysis	
	ole 1: Borehole Details	
	ble 2: Yield Determination - ECA_BH1	
	ole 3: Classification table for the specific limits	
	ble 5: Production borehole results classified according to SANS241-1:2015	
	ole 6: Classified production borehole results according to DWAF 1998	
Tal	le 7: Borehole Abstraction Recommendations	13
Li	st of Figures	
	ure 1: ECA_BH1 during (left) and after (right) testing	
_	ure 2: Step Test drawdown data for ECA_BH1ure 2: Step Test drawdown data for ECA_BH1ure 3: Semi-Log Plot of drawdown during the CDT of ECA_BH1 (CDT 1: 15 L/s, CDT 2	
_	ure 4: Time-series drawdown and recovery for ECA_BH1 (CDT 1: 15 L/s, CDT 2: 12.5	•
Fig	ure 5: Radius of influence for ECA_BH1 at the recommended sustainable yield (1.5 L/s	s)8
	ure 6: Stiff diagram of the groundwater sample (ECA_BH1)	
rıg	ure 7: SAR diagram of the groundwater sample (ECA_BH1)	12

List of Maps

Мар	1: Borehole Locality Map	2
Мар	2: Geological Map with Property Boundary and Tested Borehole Position (1:250 000 Geologic	al
Map	Series, 3319 Worcester) (CGS, 1997).	3

Abbreviations

AD Available Drawdown

bh Borehole

CDT Constant Discharge Test CGS Council for Geoscience

DD Decimal degree

DWA Department of Water Affairs (pre- 1994)

DWAF Department of Water Affairs and Forestry (1994 – 2009)
DWS Department of Water and Sanitation (2009 –)

EC Electrical Conductivity
FC Flow Characteristic
GRF Generalised Radial Flow
IARF Infinite Acting Radial Flow

ID inner diameter L/d litres per day L/s litres per second

m metres

m²/d meters squared per day
mamsl metres above mean sea level
mbch metres below collar height
mbgl metres below ground level

mg milligram

mg/L milligram per litre mm millimetres nd not detected OD outer diameter

RWL rest water level below ground level SANS South African National Standard

T Transmissivity
TDS total dissolved solids

WGS84 Since the 1st January 1999, the official co-ordinate system for South Africa

is based on the World Geodetic System 1984 ellipsoid, commonly known as

WGS84

WL water level

WULA Water Use Licence Assessment

Glossary of Terms

aquifer a geological formation, which has structures or textures that hold water or

permit appreciable water movement through them [from National Water Act

(Act No. 36 of 1998)].

available drawdown available drawdown in a borehole is the difference between the rest water level

or piezometric surface and the depth that the water level may drop to (typically

major water baring unit, boundary inflection or pump depth).

borehole includes a well, excavation, or any other artificially constructed or improved

groundwater cavity which can be used for the purpose of intercepting, collecting or storing water from an aquifer; observing or collecting data and information on water in an aquifer; or recharging an aquifer [from National

Water Act (Act No. 36 of 1998)].

confined aquifer an aquifer confined between two impermeable beds

dynamic water level the stabilised water level in the borehole during production over long periods

of time.

electrical conductivity the ability of groundwater to conduct electrical current, due to the presence of

charged ionic species in solution (Freeze and Cherry, 1979).

fractured aquifer Fissured and fractured bedrock resulting from decompression and/or tectonic

action. Groundwater occurs predominantly within fissures and fractures.

groundwater Water found in the subsurface in the saturated zone below the water table or

piezometric surface i.e., the water table marks the upper surface of

groundwater systems.

intergranular aquifer an aquifer in which groundwater is stored in and flows through open pore

spaces in the unconsolidated Quaternary deposits.

rest water level the groundwater level in a borehole not influenced by abstraction or artificial

recharge.

sustainable yield sustainable yield is defined as the rate of withdrawal that can be sustained by

an aquifer without causing an unacceptable decline in the hydraulic head or

deterioration in water quality in the aguifer.

transmissivity the rate at which water is transmitted through a unit width of an aquifer under

a unit hydraulic gradient.

unconfined aquifer an aquifer which has free water surface - which means the water table exists

for this type of aquifer; primarily recharged by the infiltration of precipitation

from the ground surface

SPECIALIST EXPERTISE

CURRICULUM VITAE - Reuben Lazarus

GENERAL

Nationality: South African Profession: Hydrogeologist

Specialization: Groundwater development, yield testing, geochemistry and camera logging

Position in firm: Hydrogeologist, Business Unit Leader: Yield and Water Quality Testing at GEOSS

South Africa (Pty) Ltd

Date commenced: October 2017

Year of birth & ID #: 1992 – 9207075195083

Language skills: Afrikaans (mother tongue) English (excellent)

KEY SKILLS

- Groundwater component of Catchment Management Strategies and other Groundwater Resource Directed Measures.
- Groundwater development borehole drilling and test pumping supervision and analysis.
- Groundwater monitoring development and analysis of groundwater level and quality data.
- Groundwater management sustainable aquifer development and management.
- Groundwater contamination assessments geochemical analysis.
- Writing of hydrogeological reports
- ArcMap / Geochemist's Workbench / WISH and typical software skills.

EDUCATIONAL AND PROFESSIONAL STATUS

Qualifications

2018	BSc (Geology – Environmental Geochemistry)	University of Stellenbosch, South Africa
2016	BSc (Hons) (Earth Science)	University of Stellenbosch, South Africa
2015	BSc (Earth Science)	University of Stellenbosch, South Africa

Courses and symposiums

2023	VFD Level 1 and Level 2 (ElectroMechanica)
	•
2023	PLC Level 1 and Level 2 AS 200 (ElectroMechanica)
2023	Basic hydraulics & Pumps (Dudley Willer)
2022	Environmental Sampling Workshop (Van Walt)
2019	SA remediation workshop (Enviro Workshops)

Memberships/Organisations

- · South African Council for National Scientific Professions (SACNASP)- Mem. No. Pr.Sci.Nat: 120711
- Groundwater Division of the Geological Society of South Africa UID 9661/21
- Geological Society of South Africa Mem. No. 970021

EMPLOYMENT RECORD

June 2021 – present: GEOSS South Africa (Pty) Ltd, Stellenbosch

Project Hydrogeologist: Yield and Water Quality Testing Business Unit Leader

October 2018 – June 2021: GEOSS South Africa (Pty) Ltd, Stellenbosch

Project Hydrogeologist

October 2017 - October 2018: GEOSS - Geohydrological and Spatial Solutions International (Pty) Ltd

Student Hydrogeologist

SPECIALIST DECLARATION

- I, Reuben Lazarus, as the appointed independent specialist(s) hereby declare that we:
 - act/ed as the independent specialist in this application;
 - regard the information contained in this report as it relates to our specialist input/study to be true and correct, and
 - do not have and will not have any financial interest in the undertaking of the activity, other than remuneration for work performed in terms of the South African National Standard (SANS 10299-4:2003, Part 4 – Test pumping of water boreholes);
 - · have and will not have no vested interest in the proposed activity proceeding;
 - have provided the competent authority with access to all information at my disposal regarding the application, whether such information is favourable to the applicant or not

Reuben Lazarus

GEOSS South Africa (Pty) Ltd

SACNSAP - Pr.Sci.Nat:

15 August 2024

1 Introduction

GEOSS South Africa (Pty) Ltd was appointed by Willie Benson from Elgin Free Range Chickens Agri Operations to conduct yield and water quality testing of one borehole at Lottershof farm, Caledon.

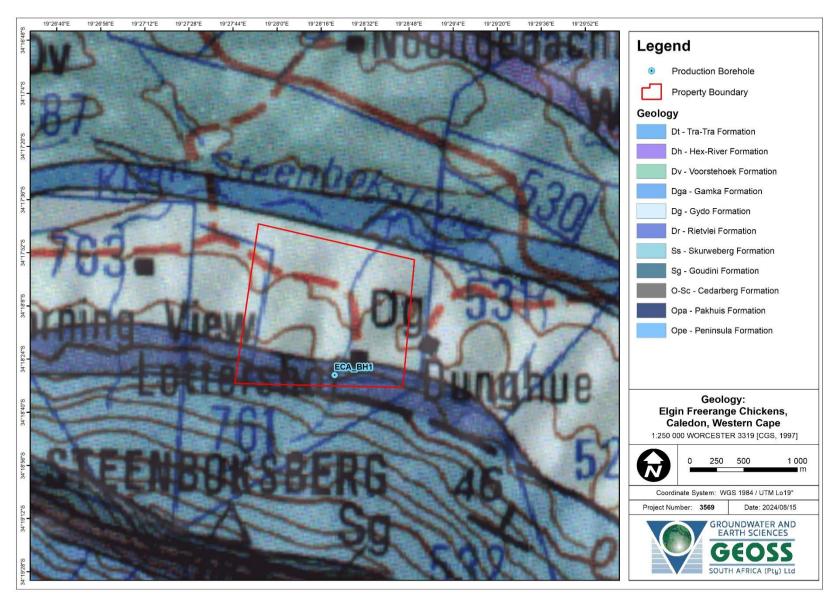
The borehole was tested by ATS under the management and supervision of GEOSS SA from the 30th of July to the 3rd of August 2024, details of this are presented in this report. The borehole's details are presented in **Table 1** below and spatially in **Map 1**. A borehole drill log is presented in **Appendix A**. The geological setting of the area indicates that the borehole is drilled through the sandstone of the Rietvlei formation (**Map 2**).

 Borehole
 Latitude (DD, WGS84)
 Longitude (DD, WGS84)
 Depth (m)

 ECA_BH1
 -34.30790°
 19.47264°
 138.6

Table 1: Borehole Details.

Figure 1: ECA_BH1 during (left) and after (right) testing.


2 Yield Testing

2.1 Methodology

The yield testing was undertaken by ATS under the management and supervision of GEOSS SA from the 30th of July to the 3rd of August 2024 and carried out according to the National Standard (SANS 10299-4:2003, Part 4 – Test pumping of water boreholes). This included a Step Test, Constant Discharge Test (CDT) and recovery monitoring of the borehole. For the Step Test, a borehole is pumped at a constant rate for one-hour intervals and the flow rates are incrementally increased for each step. This test is followed by a Constant Discharge Test where the borehole is pumped at a constant rate for an extended period of time, followed by recovery monitoring. The water level drawdown is monitored at pre-determined intervals during these tests (drawdown refers to the difference in water level from the rest water level (RWL) measured before commencement of the yield test). Raw data and measurements taken during the yield tests are presented in **Appendix B**.

Map 1: Borehole Locality Map.

Map 2: Geological Map with Property Boundary and Tested Borehole Position (1:250 000 Geological Map Series, 3319 Worcester) (CGS, 1997).

The yield test data was analysed using the excel-based FC program, developed by the IGS (Institute for Groundwater Studies) in Bloemfontein. The sustainable yield of the borehole was calculated based upon long-term extrapolations of the CDT data according to (1) the Cooper-Jacob approximation of the Theis solution for confined aquifers, (2) the Barker Generalised Radial Flow Model (GRF) for hydraulic tests in fractured rock and (3) the Flow Characteristic (FC) method(s) using first and second derivative calculations. Boundary conditions are accounted for in multiplication factors to the rate of drawdown (derivatives), according to each of the above three methods. These three methods are briefly described below.

- 1. The Cooper-Jacob approximation of the Theis solution for confined aquifers was designed for porous media aquifers, where infinite acting radial flow (IARF) was observed during the pumping of a borehole. The application of this method to fractured aquifers was discussed by Meier et al (1998), concluding that T estimates using the Cooper-Jacob analysis gave an effective T for the fracture zone. The Cooper-Jacob analysis (and more accurately the Theis method) is therefore viable for analysing pumping test data for fractured aquifers where IARF is observed. The parameters are then used to predict theoretical long-term drawdowns.
- 2. The Barker GRF Model (Barker, 1988) uses fracture hydraulic conductivity, fracture storativity and flow domain to predict drawdown due to abstraction in a borehole in a fractured medium. By changing these values, a curve of drawdown predictions can be made to fit real-world data and therefore predict theoretical long-term drawdowns.
- 3. The FC methods are the Basic FC, the FC Inflection Point and the FC Non-Linear. The Basic FC and the FC Inflection Point methods make use of the derivatives of the drawdown data to predict theoretical long-term drawdowns and the scale-back factors are applied to selected available drawdowns. The FC Non-Linear method uses curve fitting of the Step Test data to predict theoretical long-term drawdowns. Due to the short nature of the Step Test, this method is usually not included if the other methods of analysis differ from it.

In all three methods, the available drawdown was carefully selected to ensure that the flow regime described by the analytical solution is not extrapolated beyond its applicable depth, which may easily result in an overuse of the resource. For ECA_BH1 this was 54 m (63 mbgl), based on an inflection point observed in the test data corresponding to a fracture observed during drilling. A two-year extrapolation time without recharge to the aquifer was selected as per the recommendations within the FC method program.

Water samples were collected at the end of the yield test and submitted for inorganic chemical analyses.

2.2 Yield Testing at AB_BH1

The yield testing was conducted between the 30th of July and the 3rd of August 2024. The borehole was measured to a depth of 138.6 meters below ground level (mbgl). The test pump was installed at a depth of 118.5 mbgl. The rest water level (RWL) at the start of the test was 8.23 mbgl.

During the step test, the water level was drawn down 83.86 meters below the rest water level (92.8 mbgl) during the 4th step at a rate of 25 L/s. 10 minutes into the final step the pump broke down due to sand ingress. **Figure 2** shows the time-series drawdown for the Step Test.

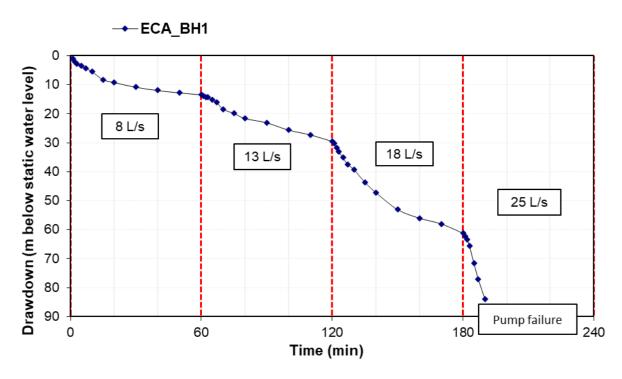


Figure 2: Step Test drawdown data for ECA_BH1.

The water level was left to recover overnight. Before starting the CDT, the water level recovered to 8.57 mbgl. Based on the results of the Step Test, the planned 24-hour CDT was conducted at a rate of 15 L/s (54 000 L/hour). After 17.7 hours, the water level had drawn down 109.12 meters below the rest water level (pump inlet). The borehole was left to recover to 12.98 mbgl, before starting a second CDT for the remaining 7 hours at 12.5 L/s. After the 7 hours, the water level had drawn down to 52.7 meters below the rest water level to 66.39 mbgl.

The semi-log plot of the drawdown from the CDT is presented in **Figure 3**. The available drawdown (AD) is indicated with the horizontal red line at 54 m.

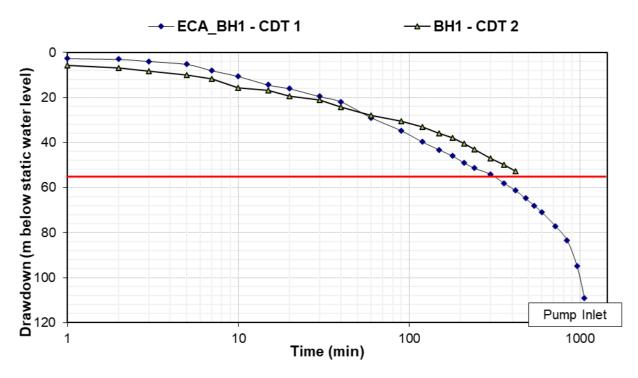


Figure 3: Semi-Log Plot of drawdown during the CDT of ECA_BH1 (CDT 1: 15 L/s, CDT 2: 12.5 L/s).

The recovery of the water level was monitored after the first CDT and is presented in **Figure 4**. The recovery was moderate, reaching 93.6% after pump time and 95.8% in 24 hours. Monitoring will be essential to determine the long-term recovery of the borehole.

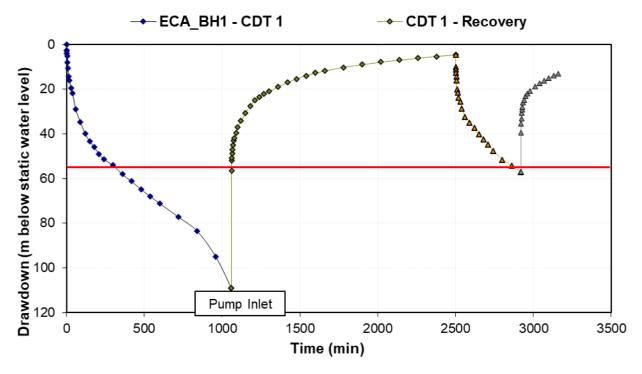


Figure 4: Time-series drawdown and recovery for ECA_BH1 (CDT 1: 15 L/s, CDT 2: 12.5 L/s).

Several methods were used to assess the yield test data as presented in **Table 2**. It is recommended that the borehole can be abstracted from at a rate of up to 1.5 L/s (5 400 L/hour) for up to 24 hours per day. The assessments were based on an available drawdown (AD) of 54 meters below the RWL of the CDT, which equates to 63 mbgl.

Table 2: Yield Determination - ECA_BH1.

ECA_BH1				
Method	Sustainable Yield (L/s)	Late *T (m²/d)	*AD used (m)	
Basic FC	1.88	5.8	54.0	
FC inflection point	1.89		58.0	
Cooper-Jacob	2.19	6.1	54.0	
FC Non-Linear	0.71	3	54.0	
Barker	0.79		54.0	
Average Q_sust (L/s)	1.49			
Recommended Abstraction				
Abstraction Rate (L/s) Abstraction Duration (hours)		ation (hours)	Recovery Duration (hours)	
1.5	24		0	

^{**}AD- Available Drawdown

No boreholes were monitored during the testing of ECA_BH1. Transmissivity was calculated through the Theis method using the drawdown response in ECA_BH1. The transmissivity of the system was calculated at 6.1 m²/d. A storativity value of 5x10-4 was used for the radius of influence calculation based on an average expected value of confined aquifers as report by (Todd, 1980). Based on the aquifer parameters the radius of influence was calculated for the recommended sustainable yield of the borehole. A drawdown of up to 5 meters can be expected 1 kilometre away from ECA_BH1 at the recommended sustainable rate (1.5 L/s for 24 hours per day) after 2 years of abstraction without recharge (**Figure 5**).

It must be noted that the Cooper-Jacob modelling of radius of influence is based on a homogenous, confined aquifer and therefore does not account for the heterogeneity associated with secondary aquifers (fractured rock). Thus, the radius of influence model will only provide an indication of how abstraction at AB_BH1 will impact the water level in the fracture network. This suggests that the cone of depression will not expand equivalently in all directions surrounding the borehole, but will rather propagate along the fracture network within the secondary aquifer.

^{*} T – Transmissivity

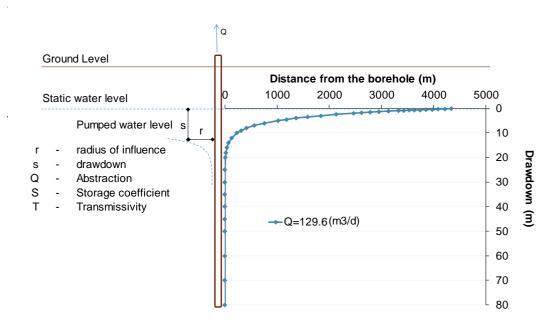


Figure 5: Radius of influence for ECA_BH1 at the recommended sustainable yield (1.5 L/s).

3 Water Quality Analysis

Groundwater samples were collected from the borehole at the end of the yield test and submitted for inorganic chemical analyses to a SANAS accredited laboratory (Vinlab) in the Western Cape. The certificate of analysis for the sample is presented in **Appendix C**. The chemistry results obtained for the borehole have been classified according to the SANS241-1: 2015 standards for domestic water (**Table 3**). **Table 5** presents the water chemistry analysis results, colour coded according to the SANS241-1: 2015 drinking water assessment standards.

Table 3: Classification table for the specific limits.

Acute Health Aesthetic	Chronic Health	Operational	Acceptable
------------------------	----------------	-------------	------------

The limits and associated risks for domestic water as determined by the South African National Standard (SANS) 241:2015 are as follows, where:

- Health risks: parameters falling outside these limits may cause acute or chronic health problems in individuals.
- Aesthetic risks: parameters falling outside these limits indicate that water is visually, aromatically or palatably unacceptable.
- Operational risks: parameters falling outside these limits may indicate that operational procedures to ensure water quality standards are met may have failed.

The chemistry results obtained have also been classified according to the DWAF (1998) standards for domestic water. **Table 4** enables an evaluation of the water quality with regards to the various parameters measured (DWAF, 1998). **Table 6** presents the water chemistry analysis results colour coded according to the DWAF drinking water assessment standards.

Table 4: Classification table for the groundwater results (DWAF, 1998).

Class	Water quality	Description	
Class 0	Class 0 Ideal Suitable for lifetime use.		
Class I	Good	Good Suitable for use, rare instances of negative effects.	
Class II	Marginal	rginal Conditionally acceptable. Negative effects may occur.	
Class III	Poor Unsuitable for use without treatment. Chronic effects may occur		
Class IV	Dangerous	Totally unsuitable for use. Acute effects may occur.	

From the chemical results presented in **Table 5** and **Table 6**, groundwater from ECA_BH1 is of poor quality for potable use. The primary issue is elevated turbidity, measured at 27.3 NTU, which exceeds the SANS 241-1:2015 aesthetic standard. This level of turbidity is likely due to fine sediments entering the borehole, and it causes aesthetic issues such as cloudiness in the water. Although some of the turbidity may clear up during borehole development, the presence of elevated iron (0.549 mg/L) poses additional concerns. High iron levels can lead to aesthetic problems like red staining on walls and infrastructure, and they increase the risk of iron biofouling. If not managed properly, biofouling could clog the borehole and associated abstraction infrastructure.

Table 5: Production borehole results classified according to SANS241-1:2015.

Analyses	ECA_BH1	SANS 241-1:2015
Date and Time Sampled	03/09/2024 15:00	
pH (at 25 °C)	6.0	5.0 ≤ Operational ≤ 9.7
Conductivity (mS/m) (at 25 °C)	28.0	Aesthetic ≤170
Total Dissolved Solids (mg/L)	189.84	Aesthetic ≤1200
Turbidity (NTU)	27.30	Operational ≤1 Aesthetic ≤5
Colour (mg/L as Pt)	<15	Aesthetic ≤15
Sodium (mg/L as Na)	37	Aesthetic ≤200
Potassium (mg/L as K)	4	N/A
Magnesium (mg/L as Mg)	4	N/A
Calcium (mg/L as Ca)	7	N/A
Chloride (mg/L as CI)	64.43	Aesthetic ≤300
Sulphate (mg/L as SO ₄)	6.86	Aesthetic ≤250 Acute ≤500
Nitrate & Nitrite Nitrogen (mg/L as N)	0.068	≤1 Acute Health
Nitrate Nitrogen (mg/L as N)	<1.00	Acute Health ≤11
Nitrite Nitrogen (mg/L as N)	<0.05	Acute Health ≤0.9
Ammonia Nitrogen (mg/L as N)	<0.15	Aesthetic ≤1.5
Total Alkalinity (mg/L as CaCO ₃)	25.1	N/A
Total Hardness (mg/L as CaCO ₃)	33.9	N/A
Fluoride (mg/L as F)	0.16	Chronic Health ≤1.5
Aluminium (mg/L as Al)	0.217	Operational ≤0.3
Total Chromium (mg/L as Cr)	<0.004	Chronic Health ≤0.05
Manganese (mg/L as Mn)	0.045	Aesthetic ≤0.1 Chronic ≤0.4
Iron (mg/L as Fe)	0.549	Aesthetic ≤0.3 Chronic ≤2
Nickel (mg/L as Ni)	<0.008	Chronic Health ≤0.07
Copper (mg/L as Cu)	0.005	Chronic Health ≤2
Zinc (mg/L as Zn)	0.716	Aesthetic ≤5
Arsenic (mg/L as As)	<0.010	Chronic Health ≤0.01
Selenium (mg/L as Se)	<0.008	Chronic Health ≤0.04
Cadmium (mg/L as Cd)	<0.001	Chronic Health ≤0.003
Antimony (mg/L as Sb)	<0.013	Chronic Health ≤0.02
Mercury (mg/L as Hg)	0.002	Chronic Health ≤0.006
Lead (mg/L as Pb)	<0.008	Chronic Health ≤0.01
Uranium (mg/L as U)	<0.028	Chronic Health ≤0.03
Cyanide (mg/L as CN ⁻)	<0.01	Acute Health ≤0.2
Total Organic Carbon (mg/L as C)	1.74	N/A
Charge Balance Error %	0.5	≥-5 - ≤5 Acceptable

Report No: 2024/08-19 10 **GEOSS**

Table 6: Classified production borehole results according to DWAF 1998.

Cample Marked	ECA DUA		DWAF (1998)	Drinking Water Asse	ssment Guide	
Sample Marked:	ECA_BH1	Class 0	Class I	Class II	Class III	Class IV
		Ideal	Good	Marginal	Poor	Dangerous
Date and Time Sampled	03/09/2024 15:00		•			
рН	6.0	5-9.5	4.5-5 & 9.5-10	4-4.5 & 10-10.5	3-4 & 10.5-11	< 3 & >11
Conductivity (mS/m)	28.0	<70	70-150	150-370	370-520	>520
Turbidity (NTU)	27.30	<0.1	0.1-1	1.0-20	20-50	>50
			mg/L			
Total Dissolved Solids	189.84	<450	450-1000	1000-2400	2400-3400	>3400
Sodium (as Na)	37	<100	100-200	200-400	400-1000	>1000
Potassium (as K)	4	<25	25-50	50-100	100-500	>500
Magnesium (as Mg)	4	<70	70-100	100-200	200-400	>400
Calcium (as Ca)	7	<80	80-150	150-300	>300	
Chloride (as Cl)	64.43	<100	100-200	200-600	600-1200	>1200
Sulphate (as SO ₄)	6.86	<200	200-400	400-600	600-1000	>1000
Nitrate & Nitrite (as N)	0.068	<6	6.0-10	10.0-20	20-40	>40
Fluoride (as F)	0.16	<0.7	0.7-1.0	1.0-1.5	1.5-3.5	>3.5
Manganese (as Mn)	0.045	<0.1	0.1-0.4	0.4-4	4.0-10.0	>10
Iron (as Fe)	0.549	<0.5	0.5-1.0	1.0-5.0	5.0-10.0	>10
Copper (as Cu)	0.005	<1	1-1.3	1.3-2	2.0-15	>15
Zinc (as Zn)	0.716	<20	>20			
Arsenic (as As)	<0.010	<0.010	0.01-0.05	0.05-0.2	0.2-2.0	>2.0
Cadmium (as Cd)	<0.001	<0.003	0.003-0.005	0.005-0.020	0.020-0.050	>0.050
Hardness (as CaCO ₃)	33.900	<200	200-300	300-600	>600	
Charge Balance Error %	0.5			≥-5 - ≤5 Acceptable		

A number of chemical diagrams have been plotted for the groundwater sample and these are useful for chemical characterisation of the water and illustrate the similarities and differences in the water types. The Stiff Diagram is a graphical representation of the equivalent concentrations of the cations (positive ions) and anions (negative ions). This diagram shows concentrations of cations and anions relative to each other and direct reference can be made to specific salts in the water. From **Figure 6**, ECA_BH1 is classified as a Sodium & Potassium/Chloride hydrofacies. This is expected of groundwater hosted in the sandstone of the Rietvlei formation.

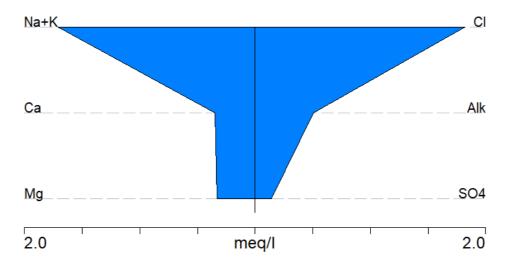


Figure 6: Stiff diagram of the groundwater sample (ECA_BH1).

The Sodium Adsorption Ratio (SAR) of the groundwater is plotted in **Figure 7**. ECA_BH1 plots as S1/C2, thus classified as low risk in terms of sodium adsorption and medium risk in terms of salinity hazard. This graph is typically applicable to irrigation, however, is dependent on soil texture and crop type.

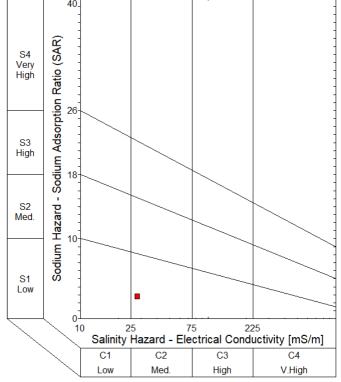


Figure 7: SAR diagram of the groundwater sample (ECA_BH1).

4 Recommendations

Based on the information obtained from the yield test, the abstraction recommendation for the borehole is presented in **Table 7**. The yield testing was conducted with a Step Test, Constant Discharge Test and Recovery Test and while this data can be analysed to estimate sustainable yields, additional drilling in the area may result in long term cumulative impacts. Optimisation of the resource is also likely through making small changes to the abstraction rate, should the dynamic water level's drawdown be less or more than expected as per **Table 7**. Both of these points are best managed through long term monitoring data.

		Borehole Detai	ls	
Borehole Name	Latitude (DD, WGS84)	Longitude (DD, WGS84)	Borehole Depth (m)	Inner Diameter (mm)
ECA_BH1	-34.30790°	19.47264°	138.6	177
	A	bstraction Recomme	ndations	
Borehole Name	Abstraction rate (L/s)	Abstraction Duration (hrs)	Recovery Duration (hrs)	Possible Volume Abstracted (L/d)
ECA_BH1	1.5	24	0	129 600
		Pump Installation D	etails	
Borehole Name	Depth		Dynamic Water Level (mbgl)*	Rest Water Level (mbgl)
ECA_BH1	66	63	29	8.23

Table 7: Borehole Abstraction Recommendations.

For borehole ECA_BH1 it is recommended that abstraction can occur at a rate of up to 1.5 L/s for 24 hours per day. A pump suitable to deliver the recommended rate should be installed at a depth of 66 mbgl. It is anticipated that abstraction at the recommended rate will cause the water level to drop to a depth of approximately 29 mbgl – this is referred to as the dynamic water level. During abstraction, a maximum level cut off switch should be installed to 63 mbgl to ensure the groundwater level does not drop to the pump inlet.

From the laboratory results, groundwater from ECA_BH1 is of poor quality for potable use. The primary issue is elevated turbidity, measured at 27.3 NTU, which exceeds the SANS 241-1:2015 aesthetic standard. This level of turbidity is likely due to fine sediments entering the borehole, and it causes aesthetic issues such as cloudiness in the water. Although some of the turbidity may clear up during borehole development, the presence of elevated iron (0.549 mg/L) poses additional concerns. High iron levels can lead to aesthetic problems like red staining on walls and infrastructure, and they increase the risk of iron biofouling. If not managed properly, biofouling could clog the borehole and associated abstraction infrastructure.

To address the potential for iron to clog the borehole and abstraction infrastructure, it is recommended to maintain a constant and continuous pumping schedule as much as possible. Thus, should a daily volume of less than 129 600 L/d be required, it is recommended to decrease the pumping rate and not the pumping duration. By pumping continuously instead of on a stop-start schedule, iron oxidation in the borehole is minimized, decreasing the amount of iron precipitation inside the boreholes and pumps.

Through long term water level monitoring data, the abstraction volumes can be optimised by adjusting

^{*} Typical water level expected during long-term production

the abstraction rate if required. It is recommended that the borehole is equipped with a variable frequency drive. This enables adjustments to the flow rate to be made if required, as determined by the hydrogeological analysis of water level and flow rate monitoring data.

As of January 2018 the Department of Water and Sanitation released a Government Gazette stating that: "All water use sector groups and individuals taking water from any water resource (surface or groundwater) regardless of the authorization type, in the Berg, Olifants and Breede Gouritz Water Management Area, shall install electronic water recording, monitoring or measuring devices to enable monitoring of abstractions, storage and use of water by existing lawful users and establish links with any monitoring or management system as well as keep records of the water used."

Therefore, to facilitate monitoring and informed management of the borehole, it is highly recommended that the borehole be equipped with the following monitoring infrastructure and equipment (diagram included in **Appendix D**):

- Installation of a 32 mm (inner diameter, class 10) observation pipe from the pump depth to the surface, closed at the bottom and slotted for the bottom 5 10 m.
- Installation of an electronic water level logger (for automated water level monitoring).
- Installation of a sampling tap (to monitor water quality).
- Installation of a flow volume meter (to monitor abstraction rates and volumes).

This monitoring data should be analysed by a qualified Hydrogeologist to ensure long-term sustainable use from the borehole. The legal compliance with regard to the use of the groundwater also needs to be addressed with the Department of Water and Sanitation.

5 References

- Barker, J.A., (1988). A Generalised Radial Flow Model for Hydraulic Tests in Fractured Rock. Water Resources Research, Vol. 24, No. 10 Pages 1796 1804.
- Council for Geoscience (1997). The 1: 250 000 geological map series Map number: 3319 Worcester.
- DWAF (1998). Quality of domestic water supplies, Volume 1: Assessment guide. Department of Water Affairs and Forestry, Department of Health, Water Research Commission, 1998.
- Todd, D.K. (1980). Groundwater Hydrology, 2nd ed., John Wiley & Sons, New York, 535p.
- Kruseman, G.P. & de Ridder, N.A. (1990). Analysis and Evaluation of pumping test data. 2nd edition, International Institute for Land Reclamation and Improvement (ILRI).
- Meier, P.M., Carrera, J. & Sanchez-Vila, X. (1998). An evaluation of Jacob's method for the interpretation of pumping tests in heterogeneous formations. Water Resources Research, Vol. 34, No. 5. 1011 1025.
- National Water Act (1998). The National Water Act, No 36. Department of Water Affair and Forestry. Pretoria.
- SANS (10299-4:2003). South African National Standard. Development, maintenance and management of groundwater resources. Part 4: Test-pumping of water boreholes. ISBN 0-626-14912-6.
- SANS (241-1:2015). Drinking water Part 1: Microbiological, physical, aesthetic and chemical determinants.

6 Appendix A: Borehole Log

Log of Borehole No.: ECA BH1 Location: EFRC Agri Calendon Latitude: -34.3079 Date: Longitude: 15-Aug-24 19.47264 Client: EFRC Agri **Ground Elevation:** 237 mamsl Description & **Lithological Description** Lithology Symbol & Depth (m) **Borehole Construction** water strike 0 Overburden 219mm Steel casing (0 -6 m) Water level (8.97m) N Weathered sandstone 20 177mm Steel casing (0 - 25m) N Water strike (17, 26m) 40 Open hole construction N Water strike (62, 70, 60 N 74m) N 80 N Sandstone Water strike (93m) 100 N Water strike (110m) 120 N Water strike (124, 129m) EOH (138 m) 140 Drilled By: **RPM Drilling** Remarks: Blow yield: **Drill Method:** Air percussion 60 000 L/h Logged By: **RPM Drilling**

7 Appendix B: Yield Test Data

Copyright subsists in this work. No part of this work may be reproduced in any form or by any means without the publisher's written permission. Any unauthorised reproduction of this work will constitute a copyright infringement and render the doer liable under both civil and criminal law.

Abbreviations					
EC	Electrical conductivity				
mbgl	Meters below ground level				
mbch	Meters below casing height				
mbdl	Meters below datum level				
magl	Meters above ground level				
L/S	Litres per second				
RPM	Rates per minute				
S/W/L	Static water level				
uS/cm	Microsiemens per centimete				

BOREHOLE TEST RECORD

CONSULTANT:	GEOSS
DISTRICT:	OVERBERG
PROVINCE:	WESTERN CAEP
FARM / VILLAGE NAME :	ELGIN CHICKEN FARM
DATE TESTED:	31/07/2024

			BOREHOL	E LOCATION &	ACCES	S INFORMATION:		
BOREHOLE COORDINATE	S				СОММ	ENTS ON ACCESS IF ANY:		
LATITUDE	(SOUTH):		34.3079					
LONGITUD	E (EAST):		19.47264					
BOREHOLE NO:			ECA-BH1					
TRANSMISSIVITY VALUE:]			
TYPE INSTALLATION:		NE\	W BOREHOLE					
BOREHOLE DEPTH: (mbg			138.6					
MAINTENANCE RECORD:			REHABILITATION RE	CORD:		DIGITAL CAMERA LOGGING:	EQUIPMENT FISHING RE	CORD
Labour hours:			Jetting hours:			Camera logged once:	Hours spent:	
Cost of material:			Brushing hours:			Camera logged twice:		
Travelling (km):			Airlifting hours:			Camera logged three times:	OTHER COSTS ON PROJ	ECT:
			Sulphamic Acid KG's			Camera work sent to client:	Courier of samples:	
			Boresaver KG's Soda Ash KG's				Km's for delivery:	
			Soda ASII KG'S				Cost of packaging:	
	СО	MMENT	S:			RECOMMENDATI	ONS / CORRECTIVE ACTION	IS:
C. T. F. INOTRIJOTIONS								
SAMPLE INSTRUCTIONS Water sample taken	: Yes	No	If consultant too	ok sample, give na	ma:		DATA CAPTURED BY	EC
Date sample taken	03/08/2024			courier, to where:	me.		DATA CHECKED BY:	AVN
Time sample taken	15H00		ii dampio d	ocuner, to unions.			5/11/1 GILLONES 511	,,,,,
	161.60		l					
DESCRIPTION:		UNIT	QTY				UNIT	QTY
STRAIGHTNESS TEST:		NO	0	BOREHOLE DEP	TH AFT	ER TEST:	М	138.60
VERTICALLY TEST:		NO	0	BOREHOLE WAT	TER LE	VEL AFTER TEST: (mbch)	М	12.7
CASING DETECTION:		NO	1	SAND/GRAVEL/S	SILT PUI	MPED?	YES/NO	0
SUPPLIED NEW STEEL BO	REHOLE COVER	NO	0	DATA REPORTIN	IG AND	RECORDING	NO	1
BOREHOLE MARKING		NO	0	SLUG TEST:			NO	0
SITE CLEANING & FINISHIN	NG	NO	1	LAYFLAT (M):			М	100
LOGGERS FOR WATERLEY	VEL MONITORING	NO	0	LOGGERS FOR	pH AND	EC:	NO	0
It is hereby acknowledged th	at upon leaving the	site, all	existing equipment is	s in an acceptable	conditio	on.		
NAME:				SIGN	ATURE:	·		

DESIGNATION:

DATE:

DONLINGLE	TEST REC	ORD SH	HEET	STEPPED I	JISCHARG	DE 1531 &	KECO	V ER I							
PROJ NO : BOREHOLE ALT BH NO:		P2987 ECA-BI		Coordinates	:SOUTH: EAST:	34.3079 19.47264				PROVIN DISTRI SITE N	CT:	OVERB			
LT BH NO:		0											CHICKE	N FARM	
SOREHOLE VATER LEVE	, ,		138.60 8.94			EVEL ABOV		IG (m):	0.32 0.39		NG PUMP: RACTOR:	0 ATS			
DEPTH OF P			118.50			IP INLET (m	• ,		170.00	PUMP		WA 110)-2		
				S	TEPPED D	ISCHARG	E TEST	& REC	OVERY						
DISCHARGE	RATE 1			276	DISCHAR	GE RATE 2		RPM	434	DISCH	ARGE RATE	E 3	RPM	618	
DATE:	31/07/2022	TIME:	12H40		DATE:	31/07/202	TIME:	13H40		DATE:	31/07/202	TIME:	14H40		
TIME	DRAW	YIELD	TIME	RECOVERY		DRAW	YIELD	TIME	RECOVERY		DRAW	YIELD	TIME	RECOVER	
MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	
<u>. </u>	1.08 2.13		2		2	13.96 14.24	10.96	2		2	30.22 31.84		2		
<u>2</u> 3	2.13		3		3	14.24	10.96	3		3	33.08		3		
<u>, </u>	3.50		5		5	15.12	12.52	5		5	35.08	17.45			
,	4.28	6.25	7		7	16.04	12.52	7		7	37.43	17.43	7		
0	5.50	0.20	10		10	18.43	13.00	10		10	39.27	18.09	10		
5	8.25	8.02	15		15	19.90	. 5.55	15		15	43.63	. 5.50	15		
20	9.20	8.09	20		20	21.62	13.04	20		20	47.17	18.14		1	
30	10.85		30		30	23.13	13.10			30	53.07	18.11		İ	
10	11.98	8.12	40		40	25.63		40		40	56.03		40		
50	12.77		50		50	27.30	13.12	50		50	58.02	18.06	50		
60	13.49	8.04	60		60	29.57		60		60	61.28		60		
70			70		70			70		70			70		
30			80		80			80		80			80		
00			90		90			90		90			90		
00			100		100			100		100			100		
110			110		110			110		110			110		
120			120		120			120		120			120		
рН			150		pН			150		рН			150		
TEMP	22.10	°C	180		TEMP	17.80	°C	180		TEMP	16.20	°C	180		
EC	288	μS/cm	210		EC	274	μS/cm	210		EC	256	μS/cm	210		
DISCHARGE	RATE 4		RPM		DISCHAR					חופרוו.	ARGE RATE	= 6			
	0.1.10=10.00.1	T11 45				GE KAIE 3	I	RPM			ANOL NAIL	ı	RPM		
DATE:	31/07/2024	l e	15H40	DE00/EDV	DATE:		TIME:		DE00/EDV	DATE:		TIME:		DE00\#E	
TIME	DRAW	YIELD	15H40 TIME	RECOVERY	DATE: TIME	DRAW	YIELD	TIME	RECOVERY	DATE: TIME	DRAW	TIME: YIELD	TIME		
	DRAW DOWN (M)	YIELD	15H40	(M)	DATE:		YIELD	TIME (MIN)	RECOVERY	DATE:		TIME: YIELD	TIME (MIN)	RECOVER	
TIME (MIN)	DRAW DOWN (M) 62.30	YIELD	15H40 TIME (MIN) 1	(M) 38.96	DATE: TIME (MIN) 1	DRAW	YIELD	TIME (MIN)		DATE: TIME (MIN) 1	DRAW	TIME: YIELD	TIME (MIN)	RECOVEF (M)	
TIME (MIN) 1	DRAW DOWN (M) 62.30 63.43	YIELD	15H40 TIME (MIN) 1 2	(M) 38.96 28.91	DATE: TIME (MIN) 1 2	DRAW	YIELD	TIME (MIN) 1 2		DATE: TIME (MIN) 1 2	DRAW	TIME: YIELD	TIME (MIN) 1		
TIME MIN) 1 2 3	DRAW DOWN (M) 62.30 63.43 65.62	YIELD (L/S)	15H40 TIME (MIN) 1 2 3	(M) 38.96 28.91 25.89	DATE: TIME (MIN) 1 2 3	DRAW	YIELD	TIME (MIN) 1 2 3		DATE: TIME (MIN) 1 2 3	DRAW	TIME: YIELD	TIME (MIN) 1 2 3		
TIME (MIN) 1 2 3	DRAW DOWN (M) 62.30 63.43 65.62 71.61	YIELD	15H40 TIME (MIN) 1 2 3 5	(M) 38.96 28.91 25.89 25.00	DATE: TIME (MIN) 1 2 3 5	DRAW	YIELD	TIME (MIN) 1 2 3 5		DATE: TIME (MIN) 1 2 3 5	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5		
ΓΙΜΕ (MIN) 1 2 3 5	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7	(M) 38.96 28.91 25.89 25.00 21.24	DATE: TIME (MIN) 1 2 3 5	DRAW	YIELD	TIME (MIN) 1 2 3 5		DATE: TIME (MIN) 1 2 3 5 7	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5		
MIN) 1 2 3 5 7	DRAW DOWN (M) 62.30 63.43 65.62 71.61	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10	(M) 38.96 28.91 25.89 25.00 21.24 19.17	DATE: TIME (MIN) 1 2 3 5 7	DRAW	YIELD	TIME (MIN) 1 2 3 5 7		DATE: TIME (MIN) 1 2 3 5 7	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7		
MIN) 1 2 3 5 7 10 15	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67	DATE: TIME (MIN) 1 2 3 5	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15		DATE: TIME (MIN) 1 2 3 5 7 10	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15		
FIME MIN) 1 2 3 5	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10	(M) 38.96 28.91 25.89 25.00 21.24 19.17	DATE: TIME (MIN) 1 2 3 5 7 10	DRAW	YIELD	TIME (MIN) 1 2 3 5 7		DATE: TIME (MIN) 1 2 3 5 7	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7		
MIN) 2 3 5 7 10 15 20 30	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56	DATE: TIME (MIN) 1 2 3 5 7 10 15 20	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20		DATE: TIME (MIN) 1 2 3 5 7 10 15 20	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20		
MIN) 1 2 3 5 7 10 15 20 30 40	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30		
MIN) 1 2 3 6 7 10 15	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40		
FIME MIN) 1 2 3 5 5 7 10 0 15 5 120 130 140 150 150 150 150 150 150 150 150 150 15	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50		
FIME MIN) 1 2 3 5 7 10 15 20 30 40 60 60	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60		
TIME MIN) 2 3 5 7 0 5 5 0 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70		
TIME MIN) 2 2 3 5 5 7 7 10 0 15 5 10 10 10 10 10 10 10 10 10 10 10 10 10	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80		
TIME MIN) 2	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66 9.28	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90		
FIME MIN) 12 23 35 57 710 30 30 30 30 30 30 30 30 30 30 30 30 30	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66 9.28 8.68	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90	DRAW	YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100		
FIME MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 30 90 110 120	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	21.24 22.28	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66 9.28 8.68 8.16	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100	DRAW	YIELD (L/S)	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120 150		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 110	DRAW	TIME: YIELD (L/S)	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110		
TIME MIN) 2	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	YIELD (L/S)	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66 9.28 8.68 8.16 7.67	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 1220 pH TEMP	DRAW	YIELD	TIME ((MIN)) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 120		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120 pH TEMP	DRAW	TIME: YIELD	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 120		
FIME MIN) 1 2 3 3 5 5 7 7 10 0 15 5 10 0 15 5 10 0 10 10 10 10 10 10 10 10 10 10 10 1	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	21.24 22.28	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120 150 180 210	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66 9.28 8.68 8.16 7.67 6.99	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH	DRAW	YIELD (L/S)	TIME ((MIN)) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 120 150 180 210		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 110 110 120 pH	DRAW	TIME: YIELD (L/S)	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 120 150 180 210		
FIME MIN) 1 2 3 5 7 10 15 20 30 40 60	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	21.24 22.28	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120 150 180 210 240	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66 9.28 8.68 8.16 7.67 6.99	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 1220 pH TEMP	DRAW	YIELD (L/S)	TIME ((MIN)) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 110 110 120 150 180 210 240		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120 pH TEMP	DRAW	TIME: YIELD (L/S)	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 110 110 120 150 180 210 240		
TIME MIN) 2	DRAW DOWN (M) 62.30 63.43 65.62 71.61 77.02	21.24 22.28	15H40 TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120 150 180 210	(M) 38.96 28.91 25.89 25.00 21.24 19.17 17.67 16.56 14.49 12.95 11.57 10.76 10.03 9.66 9.28 8.68 8.16 7.67 6.99	DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 1220 pH TEMP	DRAW	YIELD (L/S)	TIME ((MIN)) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 120 150 180 210		DATE: TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 110 120 pH TEMP	DRAW	TIME: YIELD (L/S)	TIME (MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 1100 1110 120 150 180 210		

BOREH PROJ N			CONSTA	FORM 5 I		T & RECOV	ERY					
	HOLE TEST R	ECORD :		DIOUTIAN	JLU							
		P2987		Coordinates	:SOUTH	: 34.3079			PROVINCE	:	WESTE	RN CAEP
3OREH	OLE NO:	ECA-BH	11		EAST:	19.47264			DISTRICT:		OVERE	BERG
ALT BH		0		1					SITE NAME	<u>:</u>	EL O'N'	CHICKEN EVE
ALT BH	NO:	0									ELGIN	CHICKEN FAR
OREH	OLE DEPTH:	138.60		DATUM LEVE	EL ABOV	E CASING (r	n):	0.32	EXISTING I	PUMP:	0	
VATER	LEVEL (mbdl)	9.28		CASING HE	IGHT: (n	nagl):		0.39	CONTRAC	TOR:	ATS	
DEPTH	OF PUMP (m):	118.50		DIAM PUMP	INLET(m	ım):		170	PUMP TYP	E:	WA 110)-2
CONST	ANT DISCHAR	E TEST 8	RECOVER	Υ								
	TARTED	<u>, , , , , , , , , , , , , , , , , , , </u>	. ILLOOVEI	TEST COMP	LETED							
E313	IARIED	1		TEST COMP	LEIED	1						1
DATE:	01/08/2024	TIME:	13H00		DATE:		TIME:		TYPE OF P	UMP:		WA 110-2
					OBSER	VATION HOL	E 1	OBSERV	ATION HOLI		OBSEF	VATION HOLE
					NR:			NR:			NR:	
			_									
	DISCHARGE B				Distanc	\ /'		Distance	(//	1	Distan	\ /·
	DRAW	YIELD	TIME	RECOVERY	TIME:	Drawdown		TIME:	Drawdown	Recovery	TIME:	Drawdown
MIN)	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)		(min)	(m)
	2.64		1	56.57	1			1			1	
2	3.00		2	51.91	2			2			2	<u> </u>
3	3.92		3	50.74	3			3			3	
5	5.26		5	48.76	5			5			5	
	8.02	11.68	7	47.02	7			7			7	
0	10.63		10	44.98	10			10			10	
15	14.41	13.46	15	42.96	15			15			15	
20	16.09		20	41.90	20			20			20	
30	19.56	15.06	30	39.60	30			30			30	
10	21.20	1	40	37.02	40			40			40	
60	28.96	15.10	60	34.23	60			60			60	
0	34.71	15.10	90	30.70	90	1		90	 		90	
20	39.76	10.00	120	27.57	120			120			120	
50	43.21	15.02	150	25.08	150			150			150	
		15.02				-						-
80	46.02	45.11	180	23.52	180			180			180	<u> </u>
10	49.00	15.11	210	22.06	210	1		210			210	
240	51.26		240	21.09	240			240			240	
00	54.08	15.03	300	18.95	300			300			300	
360	58.10	15.07	360	17.00	360			360			360	
120	61.24		420	15.40	420			420			420	
180	64.82	15.12	480	14.02	480			480			480	
540	68.00		540	12.88	540			540			540	
600	71.09	15.07	600	11.87	600			600			600	
720	77.20		720	10.31	720			720			720	
340	83.45	15.10	840	9.01	840			840			840	
960	94.98		960	7.87	960			960			960	
		12.35	1080	6.97	1080			1080			1080	
		12.19	1200	6.13	1200			1200			1200	
		11.98	1320	5.39	1320			1320			1320	
			1440	4.63	1440			1440			1440	
			1560		1560			1560			1560	
		1	1680		1680			1680			1680	
-		1	1800		1800			1800			1800	
		1	1920	1	1920			1920			1920	
$\overline{}$		1	2040	1	2040			2040			2040	İ
-+		1	2160	1	2160			2160			2160	
		1	2280	1	2280	1		2280	 		2280	
		+	2400	+	2400			2400			2400	
-		+	2520	+	2520			2520			2520	
		+	2640	+	2640			2640			2640	
		1	2760	+	2640 2760							+
		-	2880	+	2880			2760			2760	
		+		+				2880			2880	
		1	3000	1	3000			3000			3000	1
		1	3120	1	3120			3120			3120	
		1	3240	1	3240			3240			3240	
			3360	1	3360			3360			3360	
			3480		3480			3480			3480	
			3600		3600			3600			3600	
			3720		3720			3720			3720	
			3840		3840			3840			3840	
		1	3960	1	3960			3960			3960	
			4080	1	4080			4080			4080	
						•	ı		ı			
								4200			4200	
			4200 4320		4200 4320			4200 4320			4200 4320	

			CONSTA	FORM 5 I		T & RECOV	FRY					
30REI	HOLE TEST R	ECORD :		INI DISCHAR	OL IES	. a RECUV	LIX I					
PROJN		P2987	OTTLE T	Coordinates	SOUTH	. 34 3079			PROVINCE		WEST	ERN CAEP
	IOLE NO:	ECA-BH	11	o o o r a maio o		19.47264			DISTRICT:		OVERE	
ALT BH		0		1		0 1			SITE NAME			
ALT BH		0							0.1.2.1	•	ELGIN	CHICKEN FAR
	OLE DEPTH:	138.60		DATUM LEVE	EL ABOV	E CASING (r	n):	0.32	EXISTING I	PUMP:	0	
	LEVEL (mbdl)			CASING HE			,.	0.39	CONTRAC		ATS	
	OF PUMP (m):			DIAM PUMP				170	PUMP TYP		WA 110	0-2
	\ /					,.						-
	ANT DISCHAR	E IESI 8	RECOVER									
EST S	TARTED		_	TEST COMP	LETED							
۸TE.	02/00/2024	TIME.	001100		DATE.		TIME.		T/DE OE D	LIMD.		W/A 440 0
JAIE:	03/08/2024	TIME:	08H20		DATE:	VATIONING	TIME:	ODOEDV	TYPE OF P		00055	WA 110-2
						VATION HOL	.E 1	OBSERV	ATION HOLI	E 2	OBSER	RVATION HOLE
					NR:			NR:			NR:	
	DISCHARGE B	OREHOLE			Distanc	e(m);		Distance	(m);		Distanc	ce(m);
	DRAW	YIELD	TIME	RECOVERY	TIME:	Drawdown	Recoverv	TIME:	Drawdown	Recoverv	TIME:	Drawdown
	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)	,	(min)	(m)
	5.74	1	1	35.02	1		, ,	1	<u> </u>		1	l` ′
2	6.90	1	2	31.16	2	1		2			2	1
3	8.19	1	3	28.68	3			3			3	1
,	10.04	10.62	5	26.02	5	<u> </u>		5	 		5	
,	11.63	10.02	7	24.74	7	1		7			7	
Λ.	15.74	12.54	10	23.54	10			10			10	1
0	17.00	12.54	15		15	1	-	15	-		15	+
15		12.52		21.51		 	-					
20	19.33	10.50	20	20.47	20	1		20			20	1
0	21.03	12.50	30	18.73	30	1		30			30	1
0	24.16	40	40	17.62	40	-		40			40	1
0	27.95	12.54	60	16.35	60			60			60	ļ
0	30.49	12.56	90	14.51	90			90			90	
20	32.98		120	13.00	120			120			120	
50	35.84	12.52	150	11.68	150			150			150	
80	38.06		180	10.59	180			180			180	
10	40.50	12.57	210	9.36	210			210			210	
240	43.12	12.56	240	8.61	240			240			240	
300	49.91	12.58	300		300			300			300	
60	49.91	12.58	360		360			360			360	
120	52.70	12.00	420		420			420			420	
	02.70		480		480			480			480	
			540		540			540			540	
		-	600	+	600			600			600	
		+	720	+	720			720	<u> </u>		720	
			840	+	840			840			840	
		+	960	+	960			960	-		960	
				+								
			1080	+	1080			1080			1080	
			1200	+	1200			1200			1200	
		1	1320	1	1320	<u> </u>		1320			1320	-
		 	1440	1	1440	1		1440			1440	
		1	1560	1	1560			1560			1560	<u> </u>
		1	1680	 	1680	ļ		1680			1680	
		4	1800	 	1800	ļ		1800			1800	<u> </u>
		1	1920	1	1920			1920			1920	1
		1	2040	1	2040			2040			2040	1
			2160		2160			2160			2160	
			2280		2280			2280			2280	
			2400		2400			2400			2400	
			2520		2520			2520			2520	
			2640	1	2640			2640			2640	
			2760		2760			2760			2760	
			2880		2880			2880			2880	
		İ	3000		3000			3000			3000	
		1	3120	İ	3120			3120			3120	
		1	3240	1	3240			3240			3240	İ
		1	3360	1	3360			3360			3360	1
		+	3480	1	3480	<u> </u>		3480	 		3480	1
		+	3600	+	3600			3600			3600	1
		+		+		1						
		+	3720	+	3720	1		3720			3720	1
	l	 	3840	1	3840	<u> </u>		3840			3840	
		1	3960	 	3960			3960			3960	
		+			4080	1	Ì	4080	Ī	Ì	4080	1
			4080									
			4200		4200			4200			4200	
						W/L						W/L

	Borehole Yield and Quality Testing at Elgin Free Range Chickens Agri Operations, Lottershof Farm, Caledon
8	Appendix C: Water Quality

TEST REPORT

Distillery Road Stellenbosch Tel 021-8828866/7 info@vinlab.com www.vinlab.com 2024-08-08

Water

Geoss South Africa (Pty) Ltd

Attn: Alison McDuling P.O.Box 12412 Die Boord, Stellenbosch 7613 +27218801079

Sample Details						
SampleID	W54284					
Water Type	Drinking Water					
Water Source	Borehole					
Sample Temperature						
Description	ECA_BH1					
Batch Number						
PO Number	3659_L					
Date Received	2024-08-06					
Condition	Good					

			٧	Vater - Rou	tine				
	Unit	Method	Uncertainty	Limit	Results	Results	Results	Results	Results
pH@25C (Water)		VIN-05-MW01	^^^	>= 5 to <= 9.7	6.01				
Conductivity@25C (Water)	mS/m	VIN-05-MW02	^	<- 170	28				
Turbidity (Water)*	ntu			<= 5	27.3				
Total dissolved solids (Water)*	mg/L			<= 1200	189.84				
Free Chlorine (Water)*	mg/L			<= 5	< 0.02				
Ammonia (NH4) as N (Water)	mg/L	VIN-05-MW08	8.90%	<= 1.5	< 0.15				
Nitrate as N (Water)	mg/L	VIN-05-MW08	11.00%	<= 11	<1.00				
Nitrite as N (Water)	mg/L	VIN-05-MW08	4.50%	<= 0.9	< 0.05				
Chloride (Cl-) - Water	mg/L	VIN-05-MW08	10.12%	<- 300	64.43				
Sulphates (SO4) - Water	mg/L	VIN-05-MW08	7.56%	<= 500	6.86				
Fluoride (F) - Water	mg/L	VIN-05-MW08	12.30%	<= 1.5	0.16				
Alkalinity as CaCO3 (Water)*	mg/L				25.10				
Colour (Water)*	mg/L Pt-Co			<- 15	<15				
Total Organic Carbon (Water)*	mg/L			<=10	1.74				
Date Tested					2024-08-06				

			W	later - Met	als				
	Unit	Method	Uncertainty	Limit	Results	Results	Results	Results	Results
Calcium (Ca) - Water	mg/L	VIN-05-MW43	14.60%		7				
Magnesium (Mg) - Water	mg/L	VIN-05-MW43	8.49%		4				
Sodium (Na) - Water	mg/L	VIN-05-MW43	11.45%	<= 200	37				
Potassium (K) - Water	mg/L	VIN-05-MW43	9.42%		4				

Please click here for SANS241-1:2015 drinking water limits

Test results relate only to the items tested as received. This Document shall not be reproduced without the written approval of Vinlab (Pty) Ltd. Opinions and interpretations expressed herein are outside the scope of SANAS accreditation. Results for methods VIN-05-MW12, 13 and 14, are based on Cq values, a positive result (detected) indicates a Cq value < 35 and a negative result (non-detected) indicates a Cq value of >35.

* Not SANAS Accredited. Results marked "Not SANAS Accredited" in this report are not included in the SANAS Scope of Accreditation for Vinlab.

Viriab is not liable to any client for any loss or damages suffered which could, directly or remotely, be linked to our services Alcohol results are obtained using the most appropriate or a combination of one of the following me Wawnesson, Al-alcohyzer, W = Winesson, Micro results: Enumeration of yeast; Vir. untrient, 3 days unless otherwise specified, 30°C. Samples that have had prior microbiological spoilage or treatment for spoilage should all boilings. SCI additions less than 10 days may depress the growth of microbes in culture at Wheelpotential Builded and the specified and t

^ - Conductivity <1000mS/m = \pm 1mS/m , >1000mS/m = \pm 9mS/m ^^ - COD, LR = \pm 16mg/L, MR = \pm 48mg/L, HR = \pm 477mg/L ^^ - pH \pm 0.1

VIN 09-01 07-05-2024

Page: 1 of 2

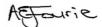
Visit Vinlab H20

TEST REPORT

Distillery Road Stellenbosch Tel 021-8828866/7 info@vinlab.com www.vinlab.com 2024-08-08

Water

Geoss South Africa (Pty) Ltd


Attn: Alison McDuling P.O.Box 12412 Die Boord, Stellenbosch 7613 +27218801079

Zinc (Zn) - Water	mg/L	VIN-05-MW43	19.40%	<= 5	0.716		
Antimony (Sb) - Water*	μg/L			<-20	<13.0		
Arsenic (As) - Water*	μg/L			<= 10	<10.0		
Boron (B) Water	μg/L	VIN-05-MW43	11.79%	<- 2400	13		
Cadmium (Cd) Water	μg/L	VIN-05-MW43	12.26%	<- 3	<1		
Chromium (Cr) - Water	μg/L	VIN-05-MW43	13.03%	<= 50	<4		
Copper (Cu) - Water	μg/L	VIN-05-MW43	11.57%	<= 2000	5		
Iron (Fe) - Water	μg/L	VIN-05-MW43	12.49%	<= 2000	549		
Lead (Pb) - Water	μg/L	VIN-05-MW43	16.32%	<= 10	<8		
Manganese (Mn) - Water	μg/L	VIN-05-MW43	12.44%	<- 400	45		
Nickel (Ni) - Water	μg/L	VIN-05-MW43	17.38%	<= 70	<8		
Selenium (Se) - Water*	μg/L			<= 40	<10.0		
Aluminium (Al) - Water	μg/L	VIN-05-MW43	13.49%	<- 300	217		
Cyanide (CN) - Water*	μg/L			<= 200	<10.0		
Mercury (Hg) - Water*	μg/L			<= 6	2		
Barium (Ba) Water	μg/L	VIN-05-MW43	14.09%	<= 700	29		
Uranium (U) - Water*	μg/L			<= 30	<28		
Date Tested					2024-08-06		

~	mm	ents
CC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	lents

W54284 Ion balance = 0.5%

Adelize Fourie

Laboratory Manager (Waterlab)
VIN-09:
N01-M02-M03-M04-M05-M08-M10-M28,
M43, MW01, MW02, MW03, MW04,
MW05, MW06, MW07, MW08-M09-10,
MW12, MW13, MW14

Please click here for SANS241-1:2015 drinking water limits

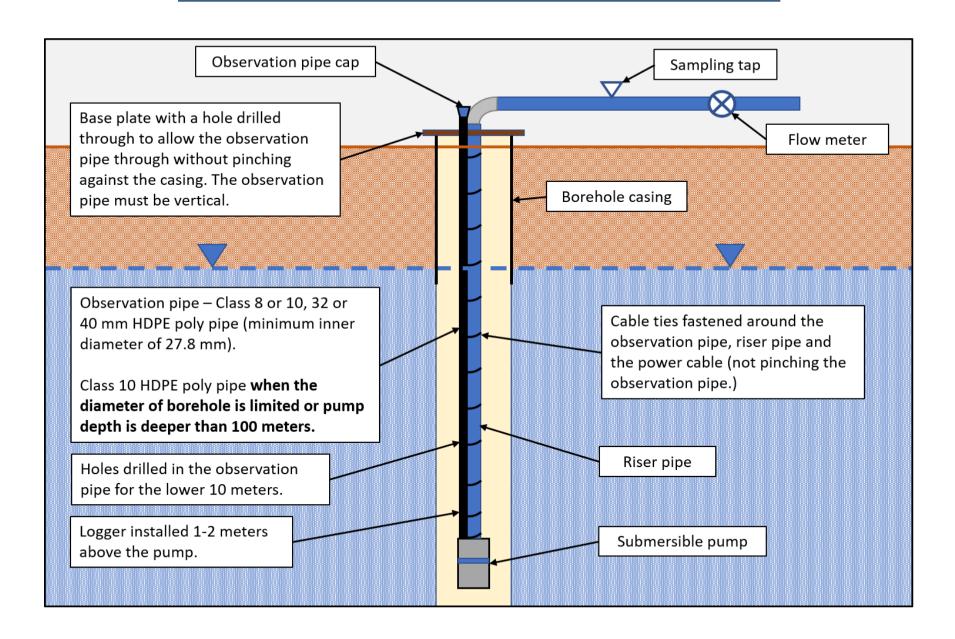
Test results relate only to the items tested as received. This Document shall not be reproduced without the written approval of Vinlab (Pty) Ltd. Opinions and interpretations expressed herein are outside the scope of SANAS accreditation. Results for methods VIN-05-MW12, 13 and 14, are based on Cq values, a positive result (detected) indicates a Cq value < 35 and a negative result (non-detected) indicates a Cq value of >35.

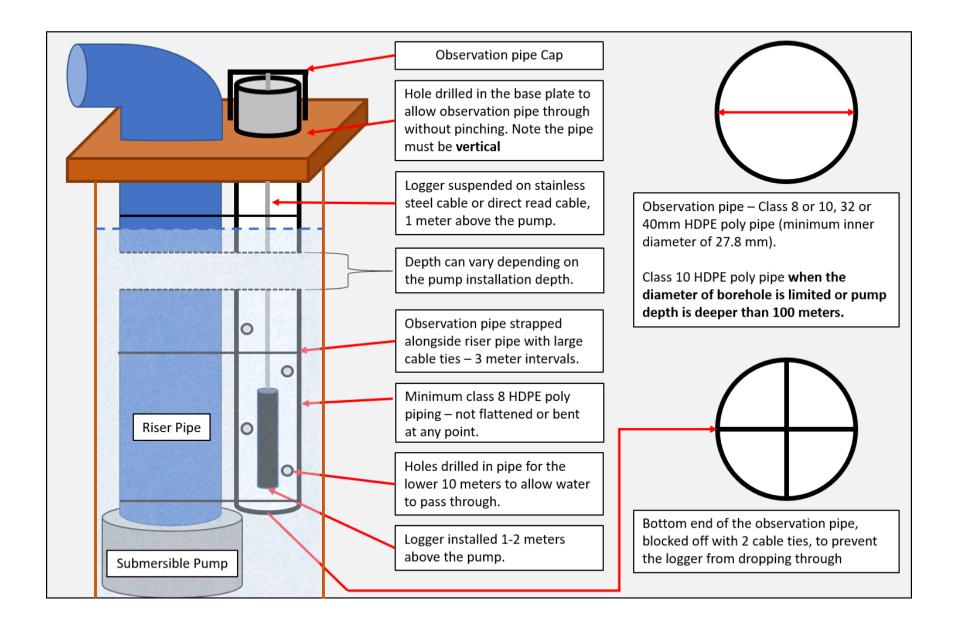
* Not SANAS Accredited. Results marked "Not SANAS Accredited" in this report are not included in the SANAS Scope of Accreditation for Vinlab.

Viriab is not liable to any client for any loss or damages suffered which could, directly or remotely, be linked to our services Alcohol results are obtained using the most appropriate or a combination of one of the following met Wawnescam, Alfacilotyser, W = Winescam, Micro results: Enumeration of yeast. Vir. untrient, 3 days unless otherwise specified, 30°C. Samples his have had prior microbological spoilage or treatment for spoilage should always to the prior of the

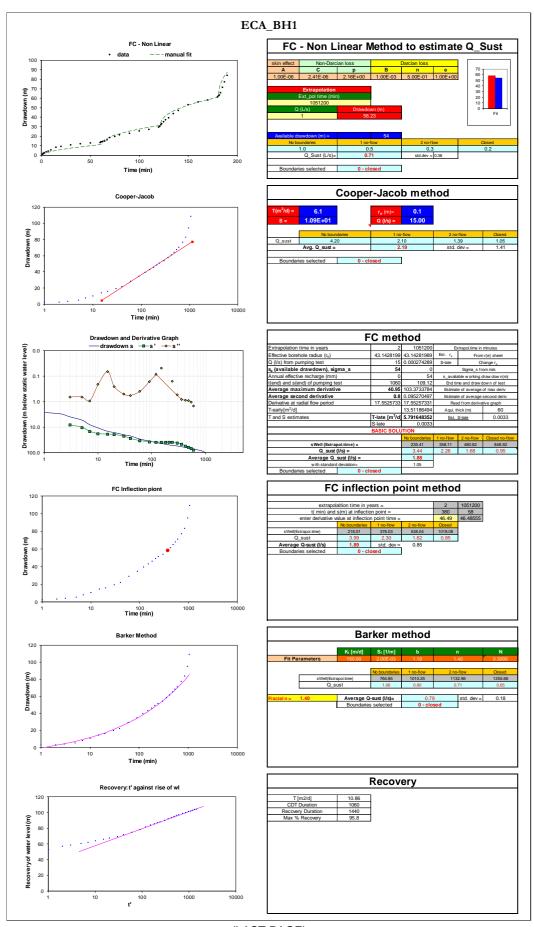
^ - Conductivity <1000mS/m = \pm 1mS/m , >1000mS/m = \pm 9mS/m ^^ - COD, LR = \pm 16mg/L, MR = \pm 48mg/L, HR = \pm 477mg/L ^^ - pH \pm 0.1

Doc No V54919


VIN 09-01 07-05-2024


Page: 2 of 2

Visit Vinlab H20



	Borehole Yield and Quality Testing at Elgin Free Range Chickens Agri Operations, Lottershof Farm, Caledon
9	Appendix D: Monitoring Infrastructure Diagram

	Borehole Yield and Quality Testing at Elgin Free Range Chickens Agri Operations, Lottershof Farm, Caledon
0	Appendix E: Yield Test Data Analysis

(LAST PAGE)